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ABSTRACT

The deep learning community has made rapid progress in
low-level visual perception tasks such as object localization,
detection and segmentation. However, for tasks such as Vi-
sual Question Answering (VQA) and visual language ground-
ing that require high-level reasoning abilities, huge gaps still
exist between artificial systems and human intelligence. In
this work, we perform a diagnostic study on recent popular
VQA in terms of analogical reasoning. We term it as Analog-
ical VQA, where a system needs to reason on a group of im-
ages to find analogical relations among them in order to cor-
rectly answer a natural language question. To study the task
in depth, we propose an initial diagnostic synthetic dataset
CLEVR-Analogy, which tests a range of analogical reason-
ing abilities (e.g. reasoning on object attributes, spatial re-
lationships, existence, and arithmetic analogies). We bench-
mark various recent state-of-the-art methods on our dataset
and compare the results against human performance, and dis-
cover that existing systems fall shorts when facing analogi-
cal reasoning involving spatial relationships. The dataset and
code will be publicly available to facilitate future research.

Index Terms— analogical reasoning, visual reasoning,
Visual Question Answering (VQA), synthetic dataset, bench-
mark

1. INTRODUCTION

Analogical reasoning is a crucial component of cognition and
intelligence [1]. For example, in the US-based Scholastic Ap-
titude Test (SAT), to answer the question “Hand is to palm as
foot is to what?”, subjects should reason analogically in lex-
ical terms: palm is the inner surface of hand, then the under-
side of foot will be sole. As the analogy can be implicit and
ambiguous, this problem is challenging and not well solved.

Although deep learning has recently achieved significant
progress in computer vision and natural language processing,
especially in Visual Question Answering (VQA), to what ex-
tent existing methods can perform analogical visual reasoning

*This work is done during Huang Ziqi’s internship at A*STAR, with
corresponding author Dr. Zhu Hongyuan. This work is supported by the
Agency for Science, Technology and Research (A*STAR) under its AME
Programmatic Funding Scheme (Project A18A2b0046).

Q: Are the missing objects all tiny
objects?
A: true
Q: How many objects are missing?
A: 8
Q: Are there any small cyan things
behind the yellow metal sphere?
A: false

(a) (b)

(c)

Fig. 1: A sample Analogical VQA problem from CLEVR-
Analogy. (a) a group of images with analogical relations. In
each row, from the image on the left to the right, every object
changes from large size to small size, with other attributes
unchanged. The bottom-right image is intentionally designed
to be incomplete, requiring the solver to recover its content
using analogical reasoning. (b) questions asked on the in-
complete image in (a), and the ground-truth answers. (c) the
ground-truth content of the incomplete image.

is still questionable and under-explored. Specifically, given
several image pairs, where there are certain common rules ap-
plied from the first to the second image every pair, we would
like to test if existing methods can identify and apply the rules
to a new image to answer the natural language questions re-
garding the changes (see Fig. 1 as an example).

To perform objective evaluation, we propose a benchmark
and diagnostic dataset called the CLEVR-Analogy dataset
(CLEVR [2] for the Compositional Language and Elemen-
tary Visual Reasoning diagnostics dataset, upon which our
dataset is built). CLEVR-Analogy has 479,900 Analogical
VQA problems and 90,000 images, distributed in 4 broad
categories and 9 analogical relations. Each Analogical VQA
problem has 4 analogically related images (i.e. 2 pairs), 1
question, and 1 ground-truth answer.

We use CLEVR-Analogy to diagnose various baselines
and find that existing methods struggle on analogies related to
spatial relationships. The notable performance gap between
the best performing VQA systems (64%) and human subjects
(93%) calls for further research into this task.

The contributions of this paper are threefold:
1. We define a new task, Analogical VQA, which requires

analogical reasoning on multiple images to correctly
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answer a natural language question.
2. We propose the CLEVR-Analogy dataset for Analogi-

cal VQA and analogical reasoning study.
3. We conduct experiments on various baselines and ana-

lyze current systems’ analogical reasoning abilities.

2. RELATED WORK

Visual Reasoning: VQA [3] is a representative task to mea-
sure visual reasoning abilities because it requires reasoning
the questions over one image to infer the correct answer and
has a well-defined evaluation metric. Different neural solu-
tions have been explored to solve VQA. For example, [4–7]
uses modular or graph networks to model individual steps in
the reasoning process. Our task is a new variant of VQA, as it
requires not only understanding language and visual content
but also learning and applying the analogy rules to address
the question. Visalogy [8] studies analogical reasoning using
the task “image A is to image B as image C is to what”. Our
Analogical VQA task is different from Visalogy in two ways:
(1) Our task is in the form of VQA while Visalogy outputs a
ranking of candidate images; (2) Visalogy only uses a simple
attribute change of a single entity to model analogical rela-
tions but we define a much wider range of analogy rules and
apply them on multiple objects every image.
Visual Question Answering: There are different approaches
to solve VQA problems. Joint embedding [3] approaches first
extract image features by a CNN and question features by a
recurrent model like LSTM [9], then fuse both features to
obtain a multimodal embedding. Various multimodal pool-
ing techniques [10–12] are explored to better express the fu-
sion of visual and textual information. Attention mechanism
enables [13, 14] to focus on local image regions selectively
and sequentially. Symbolic approaches [5, 6] further improve
VQA system performance by specializing various sub-tasks
using different modular networks or functional programs, but
require engineering a predefined inventory of modules.
Synthetic Datasets: Synthetic datasets have several ad-
vantages over collected real-world data: (1) no cost on
data collection or labeling; (2) lower contextual biases; (3)
highly controllable in data content and distribution. Our
dataset CLEVR-Analogy is most closely related to the VQA
synthetic dataset CLEVR [2], upon which several bench-
marks for change captioning [15], causal reasoning [16]
and spatiotemporal reasoning [17] are constructed. Unlike
CLEVR [2], which provides exactly one image in each VQA
round, our dataset has a group of analogically related images
for each Analogical VQA problem and requires reasoning
over the underlying analogy to correctly answer the ques-
tion. RAVEN [18] benchmarks abstract visual reasoning
abilities by image matrices, inspired by Raven’s Progressive
Matrices (RPM), a type of human intelligence test. Unlike
RAVEN [18], whose task is multiple-choice questions and
whose dataset uses simple 2D gray-scale geometric shapes in

a discrete set of positions, our task requires answering free-
form questions and increases the visual complexity using a
3D, colored and continuous position setting.

3. THE ANALOGICAL VQA TASK

In this section, we introduce the Analogical VQA task.
For each Analogical VQA problem, there are n pairs of

images I = {{Ia1 , Ib1}, {Ia2 , Ib2}, ..., {Iai , Ibi }, ..., {Ian, Ibn}}.
For each pair of images {Iai , Ibi }, there are a series of ma-
nipulation rules R applied on Iai to form Ibi , denoted as Ibi =
R(Iai ). All n pairs of images share a common manipulation
rule R∗, which will be discussed in Section 4.2.

Content of all images are visible except for the second im-
age Ibn in the final pair {Ian, Ibn}, whose content is incomplete
by removing some or all objects. Hence, the actual set of in-
put images is I∗ = {{Ia1 , Ib1}, {Ia2 , Ib2}, ..., {Iai , Ibi }, ..., {Ian,
Ib∗n }}, where Ib∗n is the incomplete version of Ibn. There is
one natural language question Q asking about the content of
the ground-truth image Ibn.

We formulate the Analogical VQA task as A = M(I∗, Q),
that is, given n pairs of images I∗ and one natural language
question Q, the model M predicts the answer A.

In order to correctly solve an Analogical VQA problem,
the model M should first analogically reason on the n pairs of
input images to discover the common mapping relation R∗,
then apply the mapping relation R∗ on image Ian to reason the
full content of the ground-truth image Ibn = R∗(Ian) to reach
the answer.

4. THE CLEVR-ANALOGY DATASET

The CLEVR-Analogy dataset studies analogical reasoning on
a group of images. It provides diagnostic tools to evaluate
different analogical reasoning abilities. Unlike the existing
dataset on visual analogy [8], our dataset is free of object
or scene bias. CLEVR-Analogy is the first dataset for the
Analogical VQA task. We provide 479,900 Analogical VQA
problems (see Table 1(a)) categorized into 9 different types
according to analogical relations among images in one prob-
lem (see Fig. 2 for examples of the 9 analogy rules).

4.1. Images

The CLEVR-Analogy dataset is built upon CLEVR [2],
adopting similar object attribute settings. There are two
object sizes (small, large), eight colors (gray, red, blue, green,
brown, purple, cyan, yellow), two materials (shiny metal,
matte rubber), and three shapes (cube, sphere, cylinder).
Objects are placed on a light gray plane. We provide ground-
truth annotations of attributes (size, color, material, shape,
orientation, and position) for every object, and pair-wise spa-
tial relationships (left, right, front, behind) for all object pairs
in the same image.
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Table 1: CLEVR-Analogy Dataset statistics. In table (b),
Problems refer to Analogical VQA problems.

Split Total Train Validation Test
Images 90,000 72,000 9,000 9,000
Questions 479,900 383,916 48,000 47,984
Problems 479,900 383,916 48,000 47,984

(a) Dataset size by split.

Type Attribute Symmetry
One

Object Array

Images 20,000 10,000 40,000 20,000
Questions 119,911 60,000 239,989 60,000
Problems 119,911 60,000 239,989 60,000

(b) Dataset size by analogy rule category.

4.2. Analogy Rules

The number of image pairs n per problem is a hyperparame-
ter that can be tuned during data generation. Smaller n means
fewer reference pairs available for mapping relation discov-
ery, while larger n increases computation consumption. When
generating CLEVR-Analogy, we set n = 2 (see Fig. 1). Both
pairs of images in one problem share a common mapping re-
lation from the first to the second image instantiated from an
analogy rule. The dataset is instantiated from 9 analogy rules
(see Fig. 2), falling into 4 broad categories (see Table 1(b)),
where each examines one aspect of analogical reasoning abil-
ities. Below are the descriptions of the analogy rules.
(1)Attribute: One of the attributes (size, color, mate-
rial, shape) changes its value from A to B in all image pairs.
- random zcms: All the objects are subject to change. In
Fig. 1, all objects change from large to small size.
- single zcms: Only one object changes in a pair.
(2)Symmetry: It has only one sub-category symmetry.
- symmetry: All objects move to their symmetric posi-
tions. The line of symmetry is either horizontal (left to right)
or vertical (front to behind) in a problem.
(3)One Object: In both image pairs, one object is added,
removed, moved or swaps position with another object.
- add one: The same new object is added in both pairs.
- drop one: The same object is removed in both pairs.
- move one: One object changes position. Start and end
positions of the moved objects are the same in both pairs.
- exchange: Two objects swap positions. In both pairs,
the positions of the two swapped objects are the same.
(4)Array: Objects are arranged in a 2D array following an
obvious pattern. From the first to second image each pair, one
additional row or column is added to the object array. Since
there are 4 directions in which we can add a line to an array,
we use the same direction for both pairs in one problem.
- horizontal array: The array lies horizontally.
- vertical array: The array stands vertically.

The analogy rule for each problem is annotated. Since

Attribute
random zcms

single zcms

One Object
add one

move one

drop one

exchange

Symmetry
symmetry

Array
horizontal array vertical array

Fig. 2: Examples of analogy rules. There are 9 analogy rules,
summarized into 4 broad categories. For each one of the 9
analogy rules, we present a pair of images as an example.

the final image in each problem might be fully or partially
incomplete, we also provide its ground-truth rendered image
(e.g. Fig. 1(c)) and annotations for easier reference.

5. EXPERIMENTS

5.1. Models

We model Analogical VQA as multiclass classification over a
predefined set of candidate answers, and report classification
accuracy on the test set for each baseline (see Fig. 4).
(1) Q-type: The baseline predicts the most frequent training-
set answer for each question type.
(2) LSTM QA: The questions are processed with learned
word embeddings followed by an LSTM [9]. The final LSTM
hidden state is passed to a multi-layer perceptron (MLP) that
predicts a distribution over candidate answers.
(3) BoW: For the 4 input images, we use CNN to extract 4
feature maps, and perform Global Average Pooling [19] on
each feature map to obtain 4 image vectors, which are then
passed to a self-attention layer to produce 4 attended vectors.
We take the average of all attended vectors to obtain the image
embedding. For the question, we flatten its word embeddings
to a vector and pass it to 2 fully-connected layers to obtain
a question embedding. The image and question embeddings
are multiplied elementwise and passed to an MLP to predict
a softmax distribution over candidate answers like [3].
(4) Vanilla: Images are encoded the same way as the BoW
baseline using CNN, and questions are encoded the same way
as the LSTM QA baseline using LSTM. The image and ques-
tion representations are multiplied elementwise and passed to
an MLP to predict answer distributions like [3].
(5) MCB: Images and questions are encoded the same way as
the Vanilla baseline, but the image and question representa-
tions are pooled using Multimodal Compact Bilinear Pooling
(MCB) [10, 11] before answer classification.
(6) SA: We use LSTM and CNN to extract question and im-
age features, then obtain a final image representation using
the architecture in Fig. 3. Finally, we use the question vector
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Question: Are the missing 
objects all tiny objects?

LSTM

CNN
CONV
layers

relation representation
of the two images

stack feature
maps along
channels

feature map

average

recovered 
representation

of the final image

final image 
representation

Stacked Attention 
Network

question vector

stack

stack

Answer: true

rebuttal

CNN

CNN

CNN

Fig. 3: Network architecture of the SA baseline.

to query the final image representation via soft attention twice
using Stacked Attention Network [13] to predict the answer.
(7) Human: We randomly sample test set problems for hu-
man evaluation, and report the average accuracy of all human
subjects.
Experimental Setup. We split CLEVR-Analogy into 80%
for training, 10% for validation, and 10% for testing (see Ta-
ble 1(a)). There are 2 pairs of images in each Analogical VQA
problem (i.e. 4 images per problem). We train all baselines
for 20 epochs on the training set and report test accuracy on
the epoch with the highest validation accuracy.
Implementation Details. Images are normalized and resized
to 224×224 before feature extraction. The CNN that extracts
image features is ResNet-101 [20], pretrained on ImageNet
and fixed during training. We use the 14×14×1024 feature
maps from the last layer of conv4 stage. LSTMs are 2-layer
with cell size of 512 or 1024. MLPs use ReLU and dropout
[21] and have 1 hidden layer of size 1000. All models are
trained using Adam [22] with learning rate 5e-4.

5.2. Analysis by Analogy Rules

(1)Attribute: In this type, each object changes at most
one of its non-spatial attributes. The accuracy of SA is higher
than that of Symmetry and One Object. Human subjects
also perform the best on Attribute. This can be attributed
to perfect one-to-one correspondence of objects in both im-
ages every pair, which eases models and human subjects from
reasoning on object mapping or spatial relationship changes.
(2)Symmetry: In this type, two images in a pair share low
pixel-level similarity due to the symmetry spatial manipula-
tion. Most baselines including Human perform the worst on
Symmetry. We believe that existing models fail to identify
the concept of spatial symmetry, or to learn the true semantics
of spatial relationships between a pair of images. One possi-
ble reason is that, for Symmetry, objects in Ian and Ibn are
at completely mirrored positions with huge spatial structure
change, which makes it difficult for models and human sub-
jects to reason and imagine Ibn. For other types, most objects
in the final image Ibn remain spatially unchanged compared
to its paired image Ian so VQA can be performed on Ibn by
referencing to Ian as a guidance.

Fig. 4: Testing accuracy (%) of each model against human
performance. Overall denotes the performance on the entire
test set, while the other 4 charts are for the 4 analogy rule
categories respectively.

(3)One Object: The baseline that performs the best on
One Object is SA because it uses attention mechanism to
focus on the specific object(s) that changes. Among sub-types
of One Object, SA performs the worst on exchange be-
cause exchange involves position change of 2 objects while
other sub-types involve only one.
(4)Array: All baselines except for Human perform the
best on this type, where objects are arranged in arrays. In
all other types, object positions appear more random and
chaotic, adding complexity to spatial relationships. Q-type
and LSTM QA performing the best on Array suggests that
it has question-conditional biases higher than other types,
partially contributing to better performance of other models.
The Vanilla, MCB, and SA baselines all perform 1 to 2 points
better on vertical array than horizontal array
because heavier object occlusions in horizontal array
add difficulty in detecting object quantities and attributes.

In summary, models perform relatively better on analo-
gies related to local manipulations but still struggle to dis-
cover the underlying spatial relationships among objects or
between two images. For example, models are better at dis-
covering the lower-level fact that “this object changes its size
from large to small” than understanding higher-level notions
like “two objects swapped their positions” or “object po-
sitions in two images are symmetric”. Understanding the
true semantics of higher-level analogies requires summariz-
ing, comparing, and extrapolating multiple lower-level facts.

6. CONCLUSIONS

We introduce the new task of Analogical VQA and inspect re-
cent state-of-the-art VQA approaches in analogical reasoning
on a group of images to correctly answer a question. We also
present CLEVR-Analogy, a dataset designed as a benchmark
and a diagnostic evaluation tool for the Analogical VQA task.
We hope that CLEVR-Analogy will help future research in
Analogical VQA and enable broader reasoning tasks.
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