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Talk-to-Edit: Fine-Grained 2D and 3D Facial
Editing via Dialog
Yuming Jiang, Zigi Huang, Tianxing Wu, Xingang Pan, Chen Change Loy, Ziwei Liu™

Abstract—Facial editing is to manipulate the facial attributes of a given face image. Nowadays, with the development of generative
models, users can easily generate 2D and 3D facial images with high fidelity and 3D-aware consistency. However, existing works are
incapable of delivering a continuous and fine-grained editing mode (e.g., editing a slightly smiling face to a big laughing one) with
natural interactions with users. In this work, we propose Talk-to-Edit, an interactive facial editing framework that performs fine-grained
attribute manipulation through dialog between the user and the system. Our key insight is to model a continual “semantic field” in the
GAN latent space. 1) Unlike previous works that regard the editing as traversing straight lines in the latent space, here the fine-grained
editing is formulated as finding a curving trajectory that respects fine-grained attribute landscape on the semantic field. 2) The
curvature at each step is location-specific and determined by the input image as well as the users’ language requests. 3) To engage
the users in a meaningful dialog, our system generates language feedback by considering both the user request and the current state
of the semantic field. We demonstrate the effectiveness of our proposed framework on both 2D and 3D-aware generative models. We

term the semantic field for the 3D-aware models as “tri-plane” flow, as it corresponds to the changes not only in the color space but
also in the density space. We also contribute CelebA-Dialog, a visual-language facial editing dataset to facilitate large-scale study.
Specifically, each image has manually annotated fine-grained attribute annotations as well as template-based textual descriptions in
natural language. Extensive quantitative and qualitative experiments demonstrate the superiority of our framework in terms of 1) the
smoothness of fine-grained editing, 2) the identity/attribute preservation, and 3) the visual photorealism and dialog fluency. Notably, the
user study validates that our overall system is consistently favored by around 80% of the participants. Our project page is

https://www.mmlab-ntu.com/project/talkedit/.

Index Terms—Facial Editing, Image Editing, Generative Models

1 INTRODUCTION

THE aim of facial editing is to manipulate facial images
in the ways specified by users. The recent advance in
deep generative models like GANSs [1], [2], [3], [4], [5], [6],
[7] has promoted the rapid growth of facial editing in recent
years, especially in image fidelity. Existing methods mainly
focus on improving the quality of facial editing but neglect
interactions with users or require users to follow some fixed
control patterns. For example, image-to-image translation
models [8]], [9]], [10], [11], [12] only translate facial images
between several discrete and fixed states, and users cannot
give any subjective controls to the system. Other face editing
methods offer users some controls, such as a semantic map
indicating the image layout [13], [14], a reference image
demonstrating the target style [15], [16], [17], [18], and a
sentence describing a desired effect [19], [20], [21], [22], [23].
However, users have to follow fixed patterns, which are too
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demanding and inflexible for most users. Besides, the only
feedback provided by the system is the edited image itself.

In terms of the flexibility of interactions, we believe
natural language is a good choice for users. Language is
not only easy to express and rich in information but also
a natural form for the system to give feedback. Thus, in
this work, we make the first attempt towards a dialog-
based facial editing framework, namely Talk-to-Edit, where
editing is performed round by round via request from the
user and feedback from the system.

In such an interactive scenario, users might not have
a clear target in their mind at the beginning of editing
and thoughts might change during editing, like tuning an
overly laughing face back to a moderate smile. Thus, the
editing system is supposed to be capable of performing
continuous and fine-grained attribute manipulations. While
some approaches [24], [25], [26], [27], [28] could perform
continuous editing to some extent by shifting the latent
code of a pre-trained GAN [3]], [4], [5], [6], they typically
make two assumptions: 1) the attribute change is achieved
by traversing along a straight line in the latent space; 2)
different identities share the same latent directions. How-
ever, these assumptions overlook the non-linear nature of
the latent space of GAN, potentially leading to several
shortcomings in practice: 1) The identity would drift dur-
ing editing; 2) When editing an attribute of interest, other
irrelevant attributes would be changed as well; 3) Artifacts
would appear if the latent code goes along the straight line
too far.

To address these challenges, we propose to learn a vector
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Hi, how does she look
like with a bigger smile?

2 Is the smile just 2
a right now? a

Yes, and the bangs can be much
longer. Let’s cover the eyebrows.

Maybe you would
like to try editing
the glasses instead?

editing and checking whether the P
bangs have covered eyebrows

Fig. 1: An example of Talk-to-Edit. The user provides a facial image and an editing request. Our system then edits the
image accordingly and provides meaningful language feedback such as clarification or alternative editing suggestions.
During editing, the system is able to control the extent of attribute change on a fine-grained scale and iteratively checks

whether the current editing step fulfills the user’s request.

field that describes location-specific directions and magnitudes
for attribute changes in the latent space of GAN, which
we term as a “semantic field”. Traversing along the curved
trajectory takes into account the non-linearity of attribute
transition in the latent space, thus achieving more fine-
grained and accurate facial editing. Besides, the curves
changing the attributes of different identities might be dif-
ferent, which can also be captured by our semantic field with
the location-specific property. In this case, the identity of the
edited facial image would be better preserved. In practice,
the semantic field is implemented as a mapping network
and is trained with fine-grained labels to better leverage
its location-specific property, which is more expressive than
prior methods supervised by binary labels.

The above semantic field editing strategy is readily em-
bedded into our dialog system to constitute the whole Talk-
to-Edit framework. Specifically, a user’s language request is
encoded by a language encoder to guide the semantic field
editing part to alter the facial attributes consistent with the
language request. After editing, feedback would be given
by the system conditioned on previous edits to check for
further refinements or offer other editing suggestions. The
user may respond to the system feedback for further edit-
ing actions, and this dialog-based editing iteration would
continue until the user is satisfied with the edited results.

To facilitate the learning of semantic field and dialog-
based editing, we contribute a large-scale visual-language
dataset named CelebA-Dialog. Unlike prior datasets with
only binary attribute labels, we annotate images in CelebA
with attribute labels of fine granularity. Accompanied by
each image, there is also a user request sample and several
captions describing these fine-grained facial attributes.

We demonstrate the capability of our proposed Talk-to-
Edit framework to manipulate 2D facial images and 3D-
aware facial images. We experiment on two representative
generative models, i.e., StyleGAN [6] and EG3D [7], for 2D
images and 3D images, respectively. Both of them utilize
the latent space to map the latent code to the images. We
perform the task of facial editing by manipulating the latent
codes of the target images. On 2D images, the manipulation
of latent codes corresponds to the editing of the color

space. On 3D images, the manipulation of latent code yields
deformations in both the color space and the density space,
which we term as the “tri-plane flow”. Our proposed Talk-
to-Edit is a plug-and-play model.

In summary, our main contributions are: 1) We propose
to perform fine-grained facial editing via dialog, an easier
interactive way for users. 2) To achieve more continuous and
fine-grained facial editing, we propose to model a location-
specific semantic field. 3) We achieve superior results with
better identity preservation and smoother change compared
to other counterparts. 4) We contribute a large-scale visual-
language dataset CelebA-Dialog, containing fine-grained
attribute labels and textual descriptions. 5) Our proposed
Talk-to-Edit can work on both 2D generative models and 3D-
aware generative models.

Compared with the earlier version in ICCV 2021 [29],
we demonstrate the potential of our proposed framework
to work on 3D-aware generative models. Specifically, we
train the 3D version of the semantic field, i.e., “tri-plane
flow”, in the latent space of EG3D. To show superiority,
we also adapt some 2D baselines to the 3D models for fair
comparisons. In addition to the methodology, we provide
more implementation details, e.g., the editing on W+ space
of StyleGAN, and explanations of the evaluation metrics.
We also include failure case discussions in this version.

2 RELATED WORK

Semantic Facial Editing. Several methods have been pro-
posed for editing specific attributes such as age progression
[30], [31]], hair synthesis [32], [33], and smile generation [34].
Unlike these attribute-specific methods relying on facial
priors such as landmarks, our method is able to manipulate
multiple semantic attributes without using facial priors.
Image-to-image translation methods [8], [9], [10]], [11], [12]
have shown impressive results on facial editing. However,
they are insufficient to perform continuous editing because
images are translated between two discrete domains.
Recently, latent space based manipulation methods [35],
[36] are drawing increasing attention due to the advance-
ment of GAN models like StyleGAN [5], [6]. These ap-
proaches typically discover semantically meaningful direc-
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Degree 1: The woman
smiles with corners of
the mouth turned up.

Degree 0: The man
looks serious with no
smile in his face.

smiles broadly with
some teeth appeared.

Degree 2: The woman Degree 3: The entire
face of the man is
beamed with happiness. smile on the face.

degree 5

degree 4
® 1%

4%

degree 3

25%
degree 0

52%

degree 2
8%
degree 1

Degree 4: The women Degree 5: The young o

in the picture has a big man in the image is

laughing happily. Fine-grained Label Distribution

Fig. 2: Illustration of CelebA-Dialog dataset. We show example images and annotations for the smiling attribute. Below
the images are the attribute degrees and the corresponding textual descriptions. We also show the fine-grained label

distribution of the smiling attribute.

tions in the latent space of a pretrained GAN so that moving
the latent code along these directions could achieve the
desired editing in the image space. Supervised methods find
directions to edit the attributes of interest using attribute
labels [24], [25], [37], while unsupervised methods exploit
semantics learned by the pretrained GAN to discover the
most important and distinguishable directions [26], [27],
[28]. InterFaceGAN [24], [25] finds a hyperplane in the latent
space to separate semantics into a binary state and then uses
the normal vector of the hyperplane as the editing direction.
A recent work [37] learns a transformation supervised by
binary attribute labels and directly adds the transformation
direction to the latent code to achieve one-step editing.
Some approaches [38], [39] consider the non-linear property
of latent space. In recent works [40]], [41], the transformer
architecture is adopted to find the editing directions in
the latent space. Different from existing methods, we learn
a location-specific field in the latent space supervised by
fine-grained labels to achieve precise fine-grained editing
and preserve facial identities. Due to the emergence of
diffusion models, there are some explorations [42], [43],
[44] on diffusion-based facial editing. In DiffusionCLIP [42]],
facial images are edited through the reversed DDIM process
guided by diffusion models, which are fine-tuned with CLIP
loss. Asyrp [43] edits the images through the semantic latent
space in pretrained diffusion models. DiffuselT [44] pro-
poses to use disentangled style and content representation
to perform editing.

Language-based Image Editing. The flexibility of natural
language has attracted researchers to propose a number of
text-to-image generation [23], [45], [46], [47] and manipu-
lation [19], [20], [21], [22], [23] approaches. For example,
given an input image, TediGAN [23] generates a new image
conditioned on a text description. Some other approaches
[48], [49], 1501, [51], [52], 53], [54] allow users to give
requests in the form of natural language but do not provide
meaningful feedback, clarification, suggestion, or interac-
tion. Chatpainter [55] synthesizes an image conditioned on
a completed dialog, but could not talk to users round by
round to edit images. Unlike existing systems that simply
“listen” to users to edit, our dialog-based editing system
is able to “talk” to users, edit the image according to user
requests, clarify with users about their intention, especially
fine-grained attribute details, and offer other editing options
for users to explore.

3D-Aware Image Generation. Existing 3D-aware image

generation works are mainly classified into three types:
mesh-based, voxel-based, and implicit representation-based
methods. Mesh-based methods [56]], [57] have limited pho-
torealism for high-quality image generation, while voxel-
based methods [58], [59], [60], [61], [62], [63] are memory-
inefficient as it requires to store voxel grids. Since the
emergence of NeRF [64], the 3D representation is shifted to
the implicit one [65], [66]]. The implicit neural representation
is implemented as fully-connected layers in accompany
by positional encodings. Though it saves memories, it is
inefficient to query and thus hampers high-quality image
generation as well. The recently proposed EG3D [7] utilizes
the advantages of implicit representation and explicit repre-
sentation (e.g., voxel grids) and proposes tri-plane represen-
tations. The StyleGAN architectures are employed to gen-
erate the intermediate tri-plane representations, which are
then rendered to low-resolution features. The final images
are generated by upsampling the low-resolution features.
Recently, E3DGE [67] proposes an inversion framework for
projecting the real image into EG3D for 3D-aware GAN
editing. In this paper, we demonstrate the capability of our
proposed framework to manipulate 3D-aware images in the
latent space of EG3D.

3 CELEBA-DIALOG DATASET

In the dialog-based facial editing scenarios, many rounds
of edits are needed till users are satisfied with the edited
images. To this end, the editing system should be able to
generate continuous and fine-grained facial editing results,
which contain intermediate states translating source images
to target images. However, for most facial attributes, binary
labels are not enough to precisely express the attribute
degrees. Consequently, methods trained with only binary
labels could not perform natural fine-grained facial editing.
Specifically, they are not able to generate plausible results
when attribute degrees become larger. Thus, fine-grained
facial attribute labels are vital to providing supervision for
fine-grained facial editing. Moreover, the system should also
be aware of the attribute degrees of edited images so that
it could provide precise feedback or suggestions to users,
which also needs fine-grained labels for training.
Motivated by these, we contribute a large-scale visual-
language face dataset named CelebA-Dialog. The CelebA-
Dialog dataset has the following properties: 1) Facial images
are annotated with rich fine-grained labels, which classify
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one attribute into multiple degrees according to its semantic
meaning; 2) Accompanied with each image, there are cap-
tions describing the attributes and a user request sample.
The CelebA-Dialog dataset is built as follows:

Data Source. CelebA dataset [68] is a well-known large-
scale face attributes dataset, which contains 202,599 images.
With each image, there are forty binary attribute anno-
tations. Due to its large-scale property and diversity, we
choose to annotate fine-grained labels for images in CelebA
dataset. Among forty binary attributes, we select five at-
tributes whose degrees cannot be exhaustively expressed
by binary labels. The selected five attributes are Bangs,
Eyeglasses, Beard, Smiling, and Young (Age).

Fine-grained Annotations. For Bangs, we classify the de-
grees according to the proportion of the exposed forehead.
There are 6 fine-grained labels in total: 100%, 80%, 60%,
40%, 20%, and 0%. The fine-grained labels for eyeglasses are
annotated according to the thickness of glasses frames and
the type of glasses (ordinary / sunglasses). The annotations
of beard are labeled according to the thickness of the beard.
And the metrics for smiling are the ratio of exposed teeth
and open mouth. As for the age, we roughly classify the
age into six categories: below 15, 15-30, 30-40, 40-50, 50-
60, and above 60. In Fig. P} we provide examples on the
fine-grained annotations of the smiling attribute. For more
detailed definitions and examples of fine-grained labels for
each attribute, please refer to the supplementary files.
Textual Descriptions. For every image, we provide fine-
grained textual descriptions which are generated via a pool
of templates. The captions for each image contain one
caption describing all the five attributes and five individual
captions for each attribute. Some caption examples are given
in Fig. 2| Besides, for every image, we also provide an
editing request sample conditioned on the captions. For
example, a serious-looking face is likely to be requested to
add a smile.

4 OUR APPROACH

The pipeline of Talk-to-Edit system is depicted in Fig.
The whole system consists of three major parts: user
request understanding, semantic field manipulation, and
system feedback. The initial inputs to the whole system are
an image I and a user’s language request r. A language
encoder F is first employed to interpret the user request into
the editing encoding e,, indicating the attribute of interest,
changing directions, etc. Then the editing encoding e, and
the corresponding latent code z is fed into the “semantic
field” F to find the corresponding vectors f. to change
the specific attribute degrees. After one round of editing,
the system will return the edited image I' and provide
reasonable feedback to the user. The editing will continue
until the user is satisfied with the editing result.

4.1 User Request Understanding

Given a user’s language request r, we use a language
encoder I to extract the editing encoding e, as follows:

e. = E(r) M

The editing encoding e,., together with the dialog and edit-
ing history, and the current state of the semantic field, will

4

decide and instruct the semantic field whether to perform
an edit in the current round of dialog. The editing encoding
e, contains the following information: 1) request type, 2)
the attribute of interest, 3) the editing direction, and 4) the
change of degree.

Users’ editing requests are classified into three types:
1) describe the attribute and specify the target degree, 2)
describe the attribute of interest and indicate the relative
degree of change, 3) describe the attribute and only the
editing direction without specifying the degree of change.
We use template-based method to generate the three types
of user requests and then train the language encoder.

4.2 Semantic Field for Facial Editing

Given an input image I € R3*#*W and a pretrained
GAN generator G, similar to previous latent space based
manipulation methods [24], [25], [37], [69], we need to firstly
inverse the corresponding latent code z € R? such that
I = G(z), and then find the certain vector f, € R? which
can change the attribute degree. Note that adopting the
same vector for all faces is vulnerable to identity change
during editing, as different faces could have different f,.
Thus, the vector should be location-specific, i.e., the vector is
not only unique to different identities but also varies during
editing. Motivated by this, we propose to model the latent
space as a continual “semantic field”, i.e., a vector field that
assigns a vector to each latent code.

Definition of Continual Semantic Field. For a latent code
z in the latent space, suppose its corresponding image I has
a score s for a certain attribute. By finding a proper vector
f- and then adding the vector to z, the attribute score s will
be changed to s'. Intuitively, the vector f, to increase the
attribute score for the latent code z is the gradient of s with
respect to z.

Mathematically, the attribute score is a scalar field, de-
noted as S : R? — R. The gradient of attribute score field
S with respect to the latent code is a vector field, which we
term as “semantic field”. The semantic field F' : R? — R?
can be defined as follows:

F=VSs. )

For a specific latent code z, the direction of its semantic
field vector f, is the direction in which the attribute score s
increases the fastest.

In the latent space, if we want to change the attribute
score s of a latent code z, all we need is to move z
along the latent direction in the semantic field. Due to the
location-specific property of the semantic field, the trajectory
of changing the attribute score from s, to s is curved. The
formula for changing attribute score is expressed as:

zp
sa+/ foodz=s, 3)

where z,, is the initial latent code and zy is the end point. As
the semantic field is continuous and location-specific, con-
tinuous facial editing can be easily achieved by traversing
the latent space along the semantic field line.

Discretization of Semantic Field. Though the attribute
score field and semantic field in the real world are both
continual, in practice, we need to discretize the continual
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better now. I also I O - = Ok it's done. It's great.
want to see how I->I>I>->I — O Are the Can we see
my friend looks = s > . | bangs of the how she will | ...
with very long A length  you look like if
bangs that cover — O like? she were 60
her eyebrows. l . years old?

,,,,,, * user request rt feedback: Ipr # user request re
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Fig. 3: Overview of Talk-to-Edit Pipeline. In round ¢, we receive the input image I; and its corresponding latent code z;
from the last round. Then the Language Encoder E extracts the editing encoding e, from the user request r;, and feeds e,
to the Semantic Field F' to guide the editing process. The latent code z; is iteratively moved along field lines by adding the
field vector f = F(z,) to z;, and a pretrained predictor is used to check whether the target degree is achieved. Finally,
the edited image I;;; will be output at the end of one round. Based on the editing encoding e,., the T'alk module gives
language feedback such as clarification and alternative editing suggestions.

— Forward pass (D Existing methods
target nftnbutz y -+=+# Back propagation @ Our method
g — 3l ¢ | -8B @ HB—| P | aﬂ;; Lyrea §=5
AAAAAA o A

Semantic Field F

TR

(a) Training Scheme of Semantic Fleld (b) Semantic Field in Latent Space

Fig. 4: (a) Training Scheme of Semantic Field. Predictor loss, identity keeping loss and discriminator loss are adopted
to ensure the location-specific property of semantic field. (b) Illustration of Semantic Field in Latent Space. Different
colors represent latent space regions with different attribute scores. The boundary between two colored regions is an
equipotential subspace. Existing methods are represented by the trajectory (D), where latent code is shifted along a fixed
direction throughout editing. Our method is represented by trajectory @), where latent code is moved along location-specific
directions.

field to approximate the real-world continual one. Thus, the fine-grained attribute predictor P is employed to supervise

discrete version of Eq. (B) can be expressed as: the learning of semantic field. The predictor has two main
N functions: one is to push the output vector to change the
s+ Z f. Az = s @) attribute of interest in the correct direction, and the other is

a Z; T — .

to keep the other irrelevant attributes unchanged. Suppose
we have k attributes in total. The fine-grained attributes of
the original image can be denoted as (as,as, ..., a;, ..., a),
where a; € {0,1,...,C} are the discrete class labels indicat-
ing the attribute degree. When we train the semantic field
for the i-th attribute, the target attributes labels y of the
Z =z+af, edited image I’ should be (a1, as, ..., a; + 1, ..., ax). With the
— 2+ aF(z), ®) ttarget at.trlbute labels, we can optimize the desu‘ed‘semantlc
field using the cross-entropy loss, then the predictor loss
where « is the step size, which is set to o = 1 in this work.  L,,.q is expressed as follows:

Since f. is supposed to change the attribute degree, the

edited image I' = G(z’) should have a different attribute P E
score from the original image I = G(z). During editing, we pred = Z Z Yiclog(Pic
repeat Eq. (5) until the desired attribute score is reached.
As illustrated in Fig. [4 to train the mapping network where C' denotes the number of fine-grained classes, y; . is
so that it has the property of a semantic field, a pretrained the binary indicator with respect to the target class, and p; .

i=1

The semantic field F' is implemented as a mapping net-
work. For a latent code z, we could obtain its corresponding
semantic field vector via f, = F(z). Then one step of latent
code shifting is achieved by:

(6)

i=1c=0
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is the softmax output of predictor P, i.e.,, p = P(I').

As the location-specific property of the semantic field
allows different identities to have different vectors, we fur-
ther introduce an identity keeping loss [70], [71] to better
preserve the face identity when shifting the latent codes
along the semantic field. Specifically, we employ an off-
the-shelf face recognition model to extract discriminative
features, and the extracted features during editing should be
as close as possible. The identity keeping loss L;4 is defined
as follows:

Lia = |[Face(I') - Face(1)], %

where Face(-) is the pretrained face recognition model [72].

Moreover, to avoid unrealistic artifacts in edited images,
we could further leverage the pretrained discriminator D
coupled with the face generator as follows:

Ldisc - *D(I,) (8)

To summarize, we use the following loss functions to
supervise the learning of the semantic field:

Liotar = )\predered + NiaLiqg + )\dischisca (9)

where Apreq, Aig and Agisc are weights for predictor loss,
identity keeping loss and discriminator loss respectively.

4.3 System Feedback

The system Talk module provides natural language feedback
as follows:

feedback; = Talk(feedback,_1,7,s,e.,h),  (10)

where 7 is the user request, s is the current system state, e,
is the editing encoding, and h is the editing history.

The feedback provided by the system comes from one
of three categories: 1) checking if the attribute degree of
the edited image meets users’ expectations, 2) providing
alternative editing suggestions or options, and 3) asking
for further user instructions. The rules for the Talk module
are illustrated in Figure [7] We will provide more details in
Section 4.6.

4.4 2D Facial Image Editing

StyleGAN [6] achieves state-of-the-art performance in gen-
erating facial images of high fidelity. StyleGAN maps an
input latent code z sampled from a fixed distribution (e.g.,
Gaussian distribution) to a facial image. The latent space of
the fixed distribution is called Z space. The editing on the
Z space follows the Eq. (B).

In StyleGAN, a mapping network M(-), composed of 8
fully-connected layers, is employed to map the latent code
from Z space to the W space. On top of these two spaces,
W+ space is an extended space of W space. The difference
is that W space shares the same latent code at different
layers while W+ space accepts different latent codes at
different layers. Compared to the Z space, the W+ space
is better disentangled, and thus editing on this space can
provide better results.

We propose a variant of the semantic field to support
the editing on W+ space. In the W+ space, deep layers
of latent codes of W+ space control the low-level features

Fig. 5: Tri-plane Flow in 3D Facial Image Editing. Travers-
ing through the latent space of 3D generative models, we
can observe changes in color space (RGB images) and den-
sity space (meshes).

of facial images, such as color, brightness, illuminations,
and etc. During facial editing, keeping these layers fixed
helps to maintain the low-level features of facial images.
Therefore, when updating latent codes, we only update the
first k layers of latent codes. We empirically set %k as 8 for
128 x 128 images and 10 for 1024 x 1024 images.

As for the updates of the latent code for the first k
layers, we adopt a regularization method [69]. To enforce
the field vector f,, to be a valid latent direction that would
not make the edited latent code fall into the outlier region
of pretrained StyleGAN latent space, we feed the output
of the semantic field F'(w) into the mapping network of
the StyleGAN. Also, we use the M (0) as the mean point of
the latent direction. With M (0), the field vector f,, can be
viewed as an offset to the mean direction. To summarize,
the latent code is updated as follows:

w=w+a- f,=w+a(M(F(w)) — M(0)), (11)
where « is the step size, F(-) denotes the semantic field
network and the M(-) is the mapping network of the
StyleGAN.

4.5 3D Facial Image Editing

For 3D-aware facial image editing, we adopt the EG3D
model [7] as the generative model for its good perfor-
mance on 3D-aware image generation. The whole architec-
ture takes the latent code z and camera parameters P as
inputs. A tri-plane representation is first generated through
a StyleGAN2-based feature generator. Then neural renderer
is employed to render the generated tri-plane representation
to a 128 x 128 image, which is then upsampled by a super-
resolution module to generate the final image.

In EG3D, the latent code z is also translated to an inter-
mediate W space. The W space also considers the camera
parameters. To avoid the influence of camera parameters,
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we keep the camera parameters unchanged during the
editing. The latent code is updated as follows:

w' = w + (M (fu, P) — M(0, P))
—w+a(M(F(w), P) — M(0,P)).  (12)

Similar to the observations in StyleGAN, in EG3D, we
also find that fixing the last few layers helps the mainte-
nance of the low-level features of the original facial images.
Different from the editing in the latent space of StyleGAN,
where the manipulation of latent code only reflects the
changes in the color space, the editing on EG3D corresponds
to the changes in the color space and the density space. As
shown in Fig. 5| by moving the latent code in the latent
space, we can observe smooth changes in the images and
meshes. The changes in images and meshes are caused by
the deformations in tri-plane representations. The editing of
the latent code manipulates the tri-plane representation and
thus changes the color and density in the rendering process.
We can term the editing in EG3D as the “tri-plane flow”.

4.6

User Request Understanding. The language encoder E has
three components: 1) a learnable 300-D word embedding; 2)
a two-layer LSTM with cell size of 1024; 3) fully-connected
layers following the LSTM to generate the editing encoding
er.

As shown in Fig. [f] commonly, users” editing requests
could be roughly classified into three major types: 1) De-
scribe the attribute and specify the target degree, e.g., Let’s
try extremely long bangs that cover the entire forehead. 2)
Describe the attribute of interest and indicate the relative
degree of change, e.g., The bangs can be slightly longer. 3)
Describe the attribute and only the editing direction without
specifying the degree of change, e.g., Let’s make the bangs
longer. Since the types of facial editing requests are relatively
fixed, we use template-based text generation methods to
form a pool of editing requests. The request pool is used
to train the language encoder. We prepare more than 300
request templates with diverse sentence patterns. A pool
of synonymous words is used to enrich the user request
templates. We use 10,000 user requests in total. For each
generated request, we provide their corresponding hard la-
bels to train the language encoder E. The language encoder
is optimized as a classification model, which uses the cross-
entropy loss as the loss function. The learning rate is set as
1073, the batch size is 2048, and the Adam optimizer [73] is
adopted.

The editing encoding e, generated by the language
encoder £ is implemented as hard labels containing the
following information: (1) request type, (2) the attribute of
interest, (3) the editing direction, and (4) the change of de-
gree. In practice, the same user request could be interpreted
differently depending on the dialog context. For example,
simply saying “Yes” has different meanings under different
scenarios. If the system makes a suggestion “Do you want to
make the bangs longer?”, by replying “Yes”, the user means
to make the bangs longer. However, if the system asks if
the desired effect is achieved in the previous round, “Yes”
means the editing is satisfactory in this context. Therefore,
multiple language encoders are needed to parse the user

Implementation Details
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request under different dialog contexts. During training, the
weights of word embedding and LSTM are shared across
different language encoders. The current system feedback
decides which language encoder would be used.

Common user request r; editing encoding e,

(" 1) Describe the attribute and specify N M

the target degree request type

e.g., Let’s try extremely long bangs

that cover the entire forehead ) m

( . . . )
2) Describe the attribute of interest and

indicate the relative degree of change — —

target attribute

e.g., The bangs can be slightly longer

\_ direction

( 3) Describe the attribute and only the A m

editing direction change degrees

e.g., Let’s make the bangs longer

Y, J

Fig. 6: Illustration of User Request Understanding Mod-
ule. The language encoder is trained to translate the user
request into editing encodings.

Semantic Field. The training of the semantic field requires
the following pretrained models: fine-grained attribute pre-
dictor P, face recognition model Face, StyleGAN generator
G, and discriminator D. The fine-grained attribute predictor
P is pretrained on CelebA-Dialog dataset using our fine-
grained attribute labels with a multi-class cross-entropy loss.
StyleGAN G and its corresponding discriminator D are
trained on the CelebA dataset [68] and FFHQ dataset [5]
for 128 x 128 and 1024 x 1024 facial images respectively. As
for the Face Model, we use the off-the-shelf ArcFace model
[72] trained on LFW dataset [74], [75].

Since the pretrained StyleGAN has the mode collapse
problem, during the training of the semantic field, we need
to sample the training latent codes such that all fine-grained
attribute classes are more balancedly distributed. The map-
ping network of semantic field F' is composed of 8 fully-
connected (FC) layers with dimension 512. Except for the
last FC layer, each FC layer is followed by a leaky ReLU with
a slope of 0.2. The learning rate for training the semantic
field is 10~%, batch size is set as 32, and Adam optimizer
[73] is adopted.

For the tri-plane flow for 3D-aware images, we use
the same pretrained fine-grained attribute predictor P, face
recognition model F'ace, and discriminator D. As for the
generator, we use the pretrained EG3D model. For the view-
point sampling, the EG3D uses fixed camera parameters,
to generate the latent code in the W space. We follow this
strategy, during the training, the latent code in the W space
is obtained using the same fixed camera parameters as those
used in EG3D.

System Feedback (Talk Module).

The aim of our Talk module is to provide natural lan-
guage feedback according to the user’s editing request and
the information on the editing history. Specifically, we track
the dialog-based editing system using a finite-state machine
as shown in Figure [/} At each system state, a few possible
types of system feedback are defined, and the actual type
of system feedback is selected based on pre-defined prob-
abilities. The actual content of the system feedback is then
instantiated based on the feedback type and system state.
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| System: suggestion whether_enough if g
User: no+edit User: yes

[@ System:start
User: start+

System: whats_next |
{ User: ¢

Fig. 7: Illustration of the Talk Module. The Talk module
follows the rules of our pre-defined state machine.

We design four different states to describe the status of
the entire editing system. 1) start, that is, the first round
of dialog, 2) editing, where the system performs editing
in the current round of dialog. Transition to this “editing”
state requires specifying the attribute of interest, which is
either the currently edited attributes (i.e., no_change) or the
new target attribute (i.e., new_attr or initial attr). As for
the transition from this “editing” state to other states, the
attribute value is set to none, 3) no edit, where the system
does not edit the image and waits for further instructions
from the user. and 3) end, where the system ends the
conversation upon the user’s request.

After one round of editing, the Talk module will provide
a natural language feedback, which belongs to one of the
following categories: 1) whether_enough — in the edit state,
the system might check whether the current attribute de-
gree is satisfying, in order to achieve fine-grained editing
desired by the user. For example, after the user requests to
make the bangs longer, the system could give the following
feedback, e.g., “Are the bangs now of the length you like?”.
2) suggestion — in both the edit state or the no edit state,
the system could provide editing suggestions, e.g., “Do you
want to try manipulating the age?” In order to let the user fully
explore possible manipulation options, the system tends not
to suggest editing an attribute that has been edited before.
If there exists a larger number of attributes not edited by the
user yet, then there is a higher probability for the system
to make a suggestion, 3) whats_next — simply asks the user
what other attributes he or she would like to edit, e.g., “Ok,
what's next?”.

We sample a sentence from a pool of templates of the
chosen feedback category and randomly replace phrases
using a predefined pool of synonyms to extend the language
richness. We observe that this simple design can provide
meaningful feedback to some extent.

5 EXPERIMENTS
5.1 Evaluation Datasets

We synthesize the evaluation dataset by sampling latent
codes from the StyleGAN pretrained on CelebA dataset [68]]
(for 2D images) and EG3D pretrained on FFHQ datset [5]
(for 3D images). Using latent codes, we then generate corre-
sponding images. When comparing with baseline methods
(explained in Sec. [5.2), we use the latent code for editing
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directly to avoid the error introduced by GAN-inversion
methods.

5.2 Comparison Methods

InterfaceGAN. InterfaceGAN [24] is a latent space based
method. The continuous editing is achieved by moving the
latent code along a straight line, i.e., adding the a same
vector to the original latent code. The direction used for
changing the attribute degree is obtained by computing the
normal vector of the binary classification SVM boundary.
This direction is fixed throughout the editing. We first train
binary attribute predictors to classify the generated images.
Then the corresponding latent codes are used to train the
binary SVM.

Multiclass SVM. We further propose an extended version
of InterfaceGAN as one of the baseline methods, named
Multiclass SVM. Instead of the binary classification SVM,
we train multiple SVM boundaries for fine-grained labels.
More specifically, for each pair of neighbouring classes, a
classification SVM would be trained. Thus, for one attribute,
there are five SVM boundaries in total. During the editing,
directions will be switched according to current states. The
attribute predictor used for the classification of generated
images is the same as the one we use for predictor loss.
Enjoy Your Editing. Enjoy your editing [37] learns a map-
ping network to generate identity-specific directions for
each initial latent codes. The identity-specific directions
keep same during editing for one image. We reimplement
the method, train the mapping network with the original
design and same hyper-parameters are adopted. To achieve
more attribute degrees, we use larger step-sizes than the
original setting, i.e., ¢ > 1.0.

5.3 Evaluation Metrics

For 2D images, we evaluate the performance of facial editing
methods in terms of identity and attribute preservation as
well as the photorealism of edited images. To evaluate the
identity preservation, we extract the features of the images
before and after editing with FaceNet [76], and compute
their Euclidean distance. As for the irrelevant attribute
preservation, we use a retrained attribute predictor to out-
put a cross-entropy score indicating whether the predicted
attribute is consistent with its ground-truth label.

Identity Preservation Metric. We use the off-the-shelf face
model FaceNet [76] to extract features for images before
and after editing. Then we compute the Euclidean distance
between features of the edited facial images and the features
of the original facial image. The identity preservation metric
is expressed as follows:

N
1
IDPreserve = i Z |FaceNet(1;) — FaceNet(Iy)|, ,

i=1
(13)

where I is the original image, I; are edited images, and NV
is the total number of edited images.

Attribute Preservation Metric. We retrain an attribute pre-
dictor P’ (different from the one we use for training), and



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

9

TABLE 1: Quantitative Comparisons on 2D Images (CelebA domain). All the methods adopt the pretrained StyleGAN on
the CelebA dataset. We report Identity / Attribute preservation metrics. A lower identity score (smaller feature distance)
means the identity is better preserved, and a lower attribute score (smaller cross-entropy) means the irrelevant attributes
are less changed. Our method has a superior performance in terms of identity and attribute preservation. The best results

are bolded, and the second best results are underlined.

Methods Bangs Eyeglasses Beard Smiling Young
InterfaceGAN [24] 0.7621 / 0.7491 0.7831 /1.1904 1.0213 / 1.6458 0.9158 / 0.9030  0.7850 / 1.4169
Multiclass SVM 0.7262 / 0.5387  0.6967 / 0.9046 1.1098 / 1.7361  0.7959 / 0.8676  0.7610 / 1.3866

Enjoy Your Editing [37]]

0.6693 / 0.4967

0.7341 / 0.9813

0.8696 / 0.7906

0.6639 / 0.5092

0.7089 / 0.5734

Talk-to-Edit (Ours)

[ 0.6047 / 0.3660

0.6229 / 0.7720

0.8324 / 0.6891

0.6434 / 0.5028

0.6309 / 0.4814

TABLE 2: Quantitative Comparisons on 2D Images (FFHQ domain). The methods adopt the pretrained Diffusion model
or StyleGAN on the FFHQ dataset. We report Identity / Attribute preservation metrics. A lower identity score (smaller
feature distance) means the identity is better preserved, and a lower attribute score (smaller cross-entropy) means the

irrelevant attributes are less changed.

Method Bangs Eyeglasses Beard Smiling Young
DiffusionCLIP [42] 0.5856 / 0.6418  0.6002 / 0.9644  0.4840 / 0.8535  0.4777 / 0.7806  0.6359 / 1.2507
Asyrp [43] 0.9292 /0.8297 1.1107 / 1.2896 0.9850 / 1.2008  1.0658 / 1.6126  1.2177 / 1.2881

Latent Transformer [41]

0.6811 / 0.5275

0.5636 / 0.5761

0.7025 / 0.6125

0.6145 / 0.4691

0.6848 / 0.5597

Talk-to-Edit (Ours)

[ 0.5743 / 0.4306

0.5552 / 0.8265

0.5278 / 0.6103

0.3493 / 0.4555

0.5720 / 0.5132

use the retrained predictor to output cross-entropy score.
The attribute preservation metric is defined as follows:

k C
S0 yiclog),.),  (14)

i=1j=1,j7#m c=0

N
AttrPreserve = —

==

where N is the total number of edited images, k is the
number of attributes, m is the index of the attribute being
edited, pj . is the softmax output of predictor P’, y; . is
the binary indicator with respect to the target class and it
is obtained by feeding the original image to the attribute
predictor.

Apart from the aforementioned metrics, we also conduct
a user study. Two groups of editing results (one is our result,
the other is another method) are provided to participants.
The participants are supposed to compare two groups of
editing images and then choose the more suitable group for
each of the following questions: 1) Which group of images
is more visually realistic? 2) Which group of images has more
continuous changes? 3) After editing, which group of images
better preserves the identity?

As for 3D-aware images, in addition to identity preser-

vation and attribute preservation, we compute the forward
Chamfer distance to evaluate the 3D consistency of the
images.
Forward Chamfer Distance. The manipulation of the latent
space of 3D-aware generative models involves not only the
changes in the color space but also the deformations in the
density space. The forward Chamfer distance is computed
between the original head mesh and the edited head mesh,
and it is defined as follows:

N
1 1 2
d=— E — E i — 15
N i=1 |S"| z€S, gégl ||9C y||2 7 4

where N is the total number of editing steps, S, is the
vertices of the original head mesh and S; is the vertices in
the head mesh of the i-th editing step.

5.4 Quantitative Evaluation on 2D Images

Identity/Attribute Preservation. To fairly compare the con-
tinuous editing results with existing methods, we produce
our results purely based on semantic field manipulation and
language is not involved. We compute the identity preserva-
tion and attribute preservation scores for the editing results
of baseline methods. Table[T|shows the quantitative compar-
ison results on CelebA domain. The generation model (i.e.,
StyleGAN) is pretrained on the CelebA dataset. Our method
achieves the best identity and attribute preservation scores.
We also report quantitative comparisons with state-of-the-
art transformer-based and diffusion-based methods which
are built upon the pretrained models on the FFHQ dataset.
The quantitative results are calculated with one-step editing
for fair comparison. As shown in Table 2} our proposed
method achieves competitive identity preservation and at-
tribute preservation scores compared to baseline methods.
Ablation Study. The location-specific property of semantic
field has the following two indications: 1) the trajectory to
edit one identity might be a curve instead of a straight line;
2) the editing trajectories are unique to individual identities.
The superiority over InterfaceGAN and Enjoy Your Editing
validates that the curved trajectory is vital for continuous
editing and we will provide further analysis in Section
Compared to Multiclass SVM, our results confirm the neces-
sity of different directions for different identities.

5.5 Qualitative Evaluation on 2D Images

Visual Photorealism. Qualitative comparisons are shown in
Fig. |8l The results of our method displayed are edited on
W+ space. Our proposed method is less likely to generate
artifacts compared to previous methods. Besides, when the
edited attribute comes to higher degrees, our method can
still generate plausible editing results while keeping the
identity unchanged.

User Study. We conduct a user study, where users are asked
the aforementioned questions and they need to choose
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Interface
GAN

Multiclass
SVM

Enjoy Your
Editing

Ours

(b) Beard

(a) Bangs

Fig. 8: Qualitative Comparison on 2D Images (CelebA domain). We compare our approach with InterfaceGAN, Multiclass
SVM, and Enjoy Your Editing. Our editing results are more realistic. Besides, our method is less likely to change the identity
and other attributes.

TABLE 3: Quantitative Comparisons on 3D-aware Images. We report Identity preservation, Attribute preservation, and
Chamfer distances. A lower identity score (smaller feature distance) means the identity is better preserved, and a lower
attribute score (smaller cross-entropy) means the irrelevant attributes are less changed. A smaller Chamfer distance means

better 3D consistency. The best results are bolded, and the second best results are underlined.

Methods Bangs

Eyeglasses

Beard Smiling

TnterfaceGAN [24] 0.4494 / 0.6345 / 965007

0.5556 / 1.0403 / 198.4897

0.4362 / 0.7480 / 72.5549  0.6065 / 0.7566 / 239.3674

Multiclass SVM 0.3882 / 0.5912 / 49.9648

Enjoy Your Editing [37] | 0.3346 / 0.6013 / 56.4048

0.4325 / 0.8606 / 63.1457
0.4247 / 0.9168 / 72.2978

0.4390 / 0.7349 / 47.7721
0.4244 / 0.7128 / 39.8632

0.3819 / 0.6047 / 44.6267
0.5803 / 0.7234 / 291.1915

Talk-to-Edit (Ours) | 0.2980 / 0.5950 / 37.7279

0.3663 / 0.8996 / 46.4000

0.4304 / 0.7164 / 64.4676  0.2733 / 0.5774 / 32.4784

100%

HI

60%

System

Indistinguishable
ndistinguishable 2B57%

38.10%

1T

40% Human

smoothness 33.33%

photorealism identity preservation
Ours vs. InterfaceGAN = Ours vs. Multiclass SVM = Ours vs. Enjoy Your Editing

(a) User Study of Editing Quality (b) User Study of Dialog Fluency

Fig. 9: User Study. (a) The percentage of participants fa-
voring our results against existing methods. Our results are
preferred by the majority of participants. (b) Over half of the
participants think the system feedback is natural.

the better images. A total number of 27 participants are
involved and they are required to compare 25 groups of
images. We mix the editing results of different attributes
together in the user study. The results of user study are
shown in Fig. ] (a). The results indicate that the majority
of users prefer our proposed method in terms of image pho-
torealism, editing smoothness, and identity preservation.

Dialog Fluency. In Fig. we show a dialog example,
where the system is asked to add beard for the young guy
in the picture. After adding the beard into a desired one,

the system then continues to edit the smile as required
by the user. The system could talk to the user smoothly
in the whole dialog. To further evaluate the fluency of
dialog, we invite seven participants to compare six pairs
of dialog. In each pair of dialog, one is generated by the
system, and the other is revised by a human. Participants
need to decide which one is more natural or if they are
indistinguishable. The results are shown in Fig. El (b). Over
half of the participants think the system feedback is natural
and fluent.

5.6 Quantitative Evaluation on 3D Images

Table [B] shows the quantitative comparisons on 3D-aware
images. For the Bangs and Eyeglasses attributes, our method
achieves the best identity preservation score and the small-
est Chamfer distance. The attribute preservation score is
comparable to Multiclass SVM. As for the beard attribute,
our method achieves comparable identity preservation score
and attribute preservation score as the Enjoy Your Editing.
For the Smiling attribute, our method outperforms the base-
line methods in all these metrics.
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User: Hello! T System: Ok, already \_/ System: Okay done. System: Ok, already \_/' System: Okay already

want to see how I done. Is the beard Is the smile what done. Would you like to done. Is there
look like if my just right now? editing and checking  you want now? try adding or playing editing and  something else that you
face were covered User: Yep! Tt's good ~ Wwhether the image  7fser: Not enough.  with the bangs? Checking ag‘e"’hef;‘: would like to try?
with short beard. now. Well, I look so request Make me smile User: Not really. Twant ¢ 1p1eq uwser  User: That's all. Thank
serious. Maybe try happier so that we ~ my face to have a very request you very much!
adding some smile? can see my teeth. big smile.

Fig. 10: Results of dialog-based facial editing. The whole process is driven by the dialog between the user and the system.

InterfaceGAN

Multiclass SVM

o0
g
b=
3
s3]

-

3
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>
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(b) Smiling

Fig. 11: Quantitative Comparisons on 3D-aware Images. We visualize the edited images and meshes. Our method
preserves the identity better.
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(c) Beard

12

(d) Smiling

Fig. 12: High-Resolution Image Editing. Our method can be generalized to 1024 x 1024 images.

E l

real image

Fig. 13: Real Image Editing. Given a real image, we first inverse the image and find its corresponding latent code in latent
space. We firstly add bangs and then add smiling.

inversed image

5.7 Qualitative Evaluation on 3D Images

In Fig. we compare the visual results obtained by dif-
ferent methods. Our method achieves better results. The
identity is well preserved and the changes in the meshes
are smooth.

5.8 Further Analysis

High-Resolution Facial Editing. Since our editing method
is a latent space manipulation based method, it can be
extended to images with any resolutions as long as the
pretrained GAN is available. Apart from editing results on
128 x 128 images shown in previous parts, we also provide
some 1024 x 1024 resolution editing results in Fig.

Real Image Editing. In Fig.[13} we show an example of real
image editing results. The image is firstly inversed by the
inversion method proposed by Pan et al. [77]. The inversion
process would finetune the weight of StyleGAN, and we
observe that the trained semantic field still works.
Location-specific Property of Semantic Field. When
traversing the semantic field, the trajectory to change the
attribute degree is determined by the curvature at each step,
and thus it is curved. To further verify this hypothesis, we
randomly sample 100 latent codes and then continuously
add eyeglasses for the corresponding 1024 x 1024 images.
For every editing direction, we compute its cosine similarity
with the initial direction. The average cosine similarity
against the attribute class change is plotted in Fig. We
observe that the cosine similarity tends to decrease as the
attribute class change increases. It confirms that the editing

adding bangs

adding smiling

Cosine Similarity between Editing Directions
1 -
08 T T T
06 J l
04 J T '|'
02 l T
0

0 1 2 3 4 5
Fine-Grained Attribute Class Change

Fig. 14: Cosine Similarity. We compute the average cosine
similarity between the initial direction and directions of later
steps. As the attribute class changes, the cosine similarity
decreases, indicating that the editing trajectories for most
facial images are curved.

direction could constantly change according to its current
location, and thus the location-specific property is vital for
continuous editing and identity preservation.

Comparisons on the Editing in Z Space and W+ space.
Since the W+ space has a better disentanglement property
compared to the Z space, we propose a variant of W+ space
editing. Quantitative comparisons of the editing in these
two spaces are shown in Table [§] The editing in W+ space
has significant improvement in Bangs, Beard, Smiling, and
Young attributes. On the Eyeglasses attribute, the editing in
W+ space has a comparable identity score as that in Z space
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TABLE 4: Quantitative Comparisons on Z space and W+ space editing. We report Identity / Attribute preservation
metrics. A lower identity score (smaller feature distance) means the identity is better preserved, and a lower attribute score
(smaller cross-entropy) means the irrelevant attributes are less changed. The best results are bolded, and the second best

results are underlined.

Methods Bangs Eyeglasses Beard Smiling Young
Z Space 0.6047 / 0.3660  0.6229 / 0.7720 0.8324 / 0.6891 0.6434 / 0.5028  0.6309 / 0.4814
W+ Space | 0.5276 / 0.2902  0.6670 / 0.6345 0.7634 / 0.5425 0.4580 / 0.3573  0.6234 / 0.2731

(a) Identity Loss

"

Fig. 16: Failure Case on 3D Facial Image Editing.

and a better attribute preservation score.

5.9 Limitations and Future Work

Here, we take the eyeglasses attribute as an example to illus-
trate the failure case of synthetic image editing. As shown
in Fig.|15|(a), identity loss could be observed in some cases,
and this issue is severer on female images. The problem may
attribute to the dataset bias and the mode collapse issue of
the pretrained GAN. For example, the CelebA dataset
has only a small number of females with eyeglasses. Thus,
females with eyeglasses are only a minority in the image
distribution of the pretrained GAN. In this case, given a
randomly sampled female without eyeglasses as the initial
image, it is sometimes difficult to wear a pair of eyeglasses
for her in a well-disentangled manner. Another issue is the
artifacts problem shown in Fig.[15[(b). For some latent code,
it is difficult to change the attribute from degree 0 to degree
1. After many latent code updating iterations, the latent code
falls into the outlier region of the latent space so that the
corresponding image would bear artifacts. Our proposed
semantic field may not perfectly model the non-linearity
property for this attribute due to the dataset imbalance.

As for editing real images, it is more prone to change
the identities. As shown in Fig. [15|(c), adding bangs would
change the face shape. This is because that GAN-inversion,
as an ill-posed problem, may introduce an additional gap
between the inverted latent code and the original latent
space. This could potentially be addressed by adopting
more advanced GAN-inversion techniques [78], [79], [80],
(81], that better keep the latent codes within the latent
domain.

Figure shows one failure case of 3D-aware facial
image editing. Artifacts would appear during the editing.
As shown in this example, there are some artifacts around
the cheek when the smiling is added to a large degree.

(b) Artifacts
Fig. 15: Failure Case on 2D Facial Image Editing.

(c) Real Cases

For the language feedback, we currently use template-
based sentences according to the system states. Although
we randomly replace some phrases with their synonyms to
extend the language richness, the diversity of the feedback is
still limited. In future works, we can use ChatGPT to further
refine the feedback by feeding the template-based sentences
generated by our system to the ChatGPT.

6 CONCLUSION

In this paper, we present a dialog-based fine-grained facial
editing system named Talk-to-Edit. The desired facial edit-
ing is driven by users’ language requests and the system is
able to provide feedback to users to make the facial editing
more feasible. By modeling the non-linearity property of
the GAN latent space using semantic field, our proposed
method is able to deliver more continuous and fine-grained
editing results. We also contribute a large-scale visual-
language facial attribute dataset named CelebA-Dialog,
which we believe would be beneficial to fine-grained and
language driven facial editing tasks. We demonstrate the
effectiveness of our proposed framework on 2D and 3D
face generative models. In future work, the performance
of real facial image editing can be further improved by
incorporating more robust GAN-inversion methods and
adding stronger identity keeping regularization. We also
hope to deal with more complex text requests by leveraging
advanced pretrained language models.
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