

Collaborative Diffusion and Human-Machine Collaborative AIGC

Ziqi Huang 黄子琪

MMLab@NTU | S-Lab, Nanyang Technological University

About Me

- Ziqi Huang 黄子琪
- Ph.D. student at MMLab@NTU
 - supervised by Prof. Ziwei Liu
 - Nanyang Technological University (NTU)
 - generative models, visual generation and manipulation
- Undergraduate
 - 2018-2022
 - Nanyang Technological University (NTU)

Overview

- Background: Generative AI, Diffusion Models
- Collaborative Diffusion for Multi-Modal Face Generation and Editing (CVPR 2023)
- Recent Works

Generative Al

GAN (2014)

StyleGAN2 (2020)

Stable Diffusion (2022)

Gradually denoise to image

gradually adds Gaussian noise to the data

- Deep Unsupervised Learning using Nonequilibrium Thermodynamics (ICML 2015)
- Denoising Diffusion Probabilistic Models (NeurIPS 2020)
- Score-based generative modeling through stochastic differential equations (ICLR 2021)
- Diffusion Models Beat GANs on Image Synthesis (NeurIPS 2021)

Forward Process / Diffusion Process

Noise

 \mathbf{x}_0

 \mathbf{x}_{t-1}

 \mathbf{x}_t

gradually adds Gaussian noise to the data

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}),$$

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t\mathbf{I}).$$

Direct sampling:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

$$\bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$$
 and $\alpha_t \coloneqq 1 - \beta_t$

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \text{ for } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Gradually denoise to image

Image

Noise

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t),$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Training & Sampling

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t \right) \right\|^{2}$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \left| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z} \right|$$

- 5: end for
- 6: return \mathbf{x}_0

Uni-Modal Diffusion Models

.

Task Highlight

(A) Multi-Modal Face Generation

given multi-modal controls

synthesize high-quality image consistent with the controls

Task Highlight

(B) Multi-Modal Face Editing

given input image

and target multi-modal conditions

edit the image to 1) satisfy the target conditions while 2) preserving the facial identity

"This man has beard of medium length. He is in his thirties."

.....

Multi-Modal Control

.

Collaborative Diffusion for Multi-Modal Face Generation and Editing

Ziqi Huang

Kelvin C.K. Chan

Yuming Jiang

Ziwei Liu

S-Lab, Nanyang Technological University

Collaborative Diffusion Framework

The framework consists of two components:

- Collaborators: pre-trained diffusion models (e.g. mask-driven, text-driven)
- **Dynamic Diffusers**: facilitate collaboration among different collaborators

Dynamic Diffuser

Dynamic Diffuser

 Dynamic Diffuser predicts Influence Functions to determine when, where, and how much each collaborator contributes

$$\mathbf{I}_{m,t} = \mathbf{D}_{\phi_m}(\mathbf{x}_t, t, c_m)$$

$$\hat{\mathbf{I}}_{m,t,p} = \frac{\exp(\mathbf{I}_{m,t,p})}{\sum_{j=1}^{M} \exp(\mathbf{I}_{j,t,p})}$$

- Dynamic Diffusers are lightweight.
- A dynamic diffuser is much smaller than a uni-modal conditional diffusion model.

Model Name	Number of Parameters	
Mask-Driven Pre-trained Diffusion Model	403.6M	
Text-Driven Pre-trained Diffusion Model	403.6M	
Dynamic Diffuser for Mask Branch	13.1M	
Dynamic Diffuser for Text Branch	13.1M	

Multi-Modal Collaboration

Multi-Modal Collaboration

• Influence Functions selectively enhance or suppress the contributions of the given modalities at each iterative step

$$\boldsymbol{\epsilon}_{pred,t} = \sum_{m=1}^{M} \hat{\mathbf{I}}_{m,t} \odot \boldsymbol{\epsilon}_{\theta_m}(x_t,t,c_m)$$

Algorithm: Training & Sampling

Algorithm 1 Dynamic Diffuser Training

```
1: repeat
  2: \mathbf{x}_0, c_1, c_2, ..., c_M \sim q(\mathbf{x}_0, c_1, c_2, ..., c_M)
   3: t \sim \text{Uniform}(\{1,\ldots,T\})
  4: \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
                                                                        Pre-Trained Uni-Modal DM
  5: for m = 1, ..., M do
           oldsymbol{\epsilon}_{pred,m,t} = oldsymbol{\epsilon}_{	heta_m} (\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1-ar{lpha}_t} oldsymbol{\epsilon},t,c_m)
               \mathbf{I}_{m,t} = \mathbf{D}_{\phi_m}(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1-ar{lpha}_t}oldsymbol{\epsilon},t,c_m)
          end for
  9: \hat{\mathbf{I}}_{m,t,p} = \frac{\exp(\mathbf{I}_{m,t,p})}{\sum_{i=1}^{M} \exp(\mathbf{I}_{i,t,p})}, softmax at each pixel p
10: \epsilon_{pred,t} = \sum_{m=1}^{M} \hat{\mathbf{I}}_{m,t} \odot \epsilon_{pred,m,t} Multi-Modal Collaboration 9: \epsilon_{pred,t} = \sum_{m=1}^{M} \hat{\mathbf{I}}_{m,t} \odot \epsilon_{pred,m,t}
11: Take gradient descent step on
                 \nabla_{\phi} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{pred,t} \|^2 where \phi = \{ \phi_m | m = 1, ..., M \}
12: until converged
```

Algorithm 2 Collaborative Sampling

```
1: \mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
  2: for t = T, ..., 1 do
  3: \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) if t > 1, else \mathbf{z} = \mathbf{0}
  4: for m = 1, ..., M do
          oldsymbol{\epsilon}_{pred,m,t} = oldsymbol{\epsilon}_{	heta_m}(\mathbf{x}_t,t,c_m)
         \mathbf{I}_{m,t} = \mathbf{D}_{\phi_m}(\mathbf{x}_t,t,\overline{c_m}) Dynamic Diffusers predict
                                                                        Influence Functions
  7: end for
  8: \hat{\mathbf{I}}_{m,t,p} = \frac{\exp(\mathbf{I}_{m,t,p})}{\sum_{i=1}^{M} \exp(\mathbf{I}_{i,t,p})}, softmax at each pixel p
10: \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{pred,t} \right) + \sigma_t \mathbf{z}
11: end for
12: return \mathbf{x}_0
```

Algorithm: Editing

Algorithm 3 Collaborative Editing

Require:

```
input image \mathbf{x}_{input}, target conditions c_{m,target}, diffusion models \epsilon_{\theta_m}, dynamic diffusers \mathbf{D}_{\phi_m}, (m=1,\ldots,M), interpolation scale \alpha
```

```
1: for m = 1, ..., M do \triangleright Uni-Modal Editing

2: c_m = c_{m,target}

3: \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_{input} + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}

4: c_{m,opt} = \operatorname{argmin}_{c_m} \mathbb{E}_{\boldsymbol{\epsilon},t} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta_m} (\mathbf{x}_t, t, c_m) \|^2

5: \theta_{m,opt} = \operatorname{argmin}_{\theta_m} \mathbb{E}_{\boldsymbol{\epsilon},t} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta_m} (\mathbf{x}_t, t, c_{m,opt}) \|^2

6: c_{m,int} = \alpha \cdot c_{m,target} + (1 - \alpha) \cdot c_{m,opt}

7: end for
```

```
8: \mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})

    Collaborate the Uni-Modal Edits

   9: for t = T, ..., 1 do
  10: \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) if t > 1, else \mathbf{z} = \mathbf{0}
 11: for m = 0, ..., M do Pre-Trained Uni-Modal DM
             oldsymbol{\epsilon}_{pred,m,t} = oldsymbol{\epsilon}_{	heta_{m,opt}}(\mathbf{x}_t,t,c_{m,int})
12:
                  \overline{\mathbf{I}_{m,t}} = \overline{\mathbf{D}}_{\phi_m}(\mathbf{x}_t,t,c_{m,int}) Dynamic Diffusers predict
 13:
                                                                                 Influence Functions
 14: end for
 15: \hat{\mathbf{I}}_{m,t,p} = \frac{\exp(\mathbf{I}_{m,t,p})}{\sum_{j=1}^{M} \exp(\mathbf{I}_{j,t,p})}, softmax at each pixel p
 16: \mathbf{\epsilon}_{pred,t} = \sum_{m=1}^{M} \hat{\mathbf{I}}_{m,t} \odot \mathbf{\epsilon}_{pred,m,t} Multi-Modal Collaboration 17: \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{\epsilon}_{pred,t} \right) + \sigma_t \mathbf{z}
  18: end for
  19: return \mathbf{x}_0
```

Imagic

Figure 3. Schematic description of Imagic. Given a real image and a target text prompt: (A) We encode the target text and get the initial text embedding \mathbf{e}_{tgt} , then optimize it to reconstruct the input image, obtaining \mathbf{e}_{opt} ; (B) We then fine-tune the generative model to improve fidelity to the input image while fixing \mathbf{e}_{opt} ; (C) Finally, we interpolate \mathbf{e}_{opt} with \mathbf{e}_{tgt} to generate the final editing result.

<u>Dynamic Diffusers</u> predict <u>Influence Functions</u>

Visual Results

Multi-Modal Conditions

Generated Image (512×512)

This man has beard of medium length. He is in his thirties.

This female is in the middle age.

Face Generation

Target Text

He is a teen. The face is covered with short pointed beard.

Edited Image

Face Editing

Mask Condition Generated Images Text Condition He is a teen. The face is covered with short pointed beard. He looks very old. He doesn't have any mustache at all. She is a teenager. This female is in the middle age. This man has beard of medium length. He is in his thirties. This woman looks

very old.

Visual Results: Generation

Visual Results: Generation

very old.

Diversity of Synthesis Results

Multi-Modal Conditions

His face is covered with short beard. He is a young adult.

She looks very young.

Generated Images

Quantitative Results of Face Generation

• Our method synthesizes images with better quality (lower FID), and higher consistency with the text and mask conditions.

Method	FID ↓	Text (%) ↑	Mask (%) ↑
TediGAN [74, 75]	157.81	24.27	72.19
Composable [41]	124.62	23.94	76.11
Ours	111.36	24.51	80.25

Visual Results: Editing

Visual Results: Editing

Input Image T

Target Mask

Target Text

Edited Image

- Spatial Variations:
 - Mask-to-image model: contours
 - Text-to-image model: skin textures and details
- Temporal Variations: Layout first, details later

 Temporal or spatial suppression in influence variation introduces performance drops, which shows the necessity of influence functions' spatial-temporal adaptivity.

Method	FID ↓	Text (%) ↑	Mask (%) ↑
Ours w/o Spatial	117.81	24.36	80.08
Ours w/o Temporal	117.34	24.48	77.07
Ours	111.36	24.51	80.25

Summary

- In *Collaborative Diffusion*, pre-trained uni-modal diffusion models collaboratively achieve multi-modal face generation and editing without being re-trained.
- **Dynamic diffuser** predicts the spatial-temporal **influence functions** to selectively enhance or suppress the contributions from each collaborator.
- Both quantitative and qualitative results demonstrate the superiority of Collaborative Diffusion in multi-modal face generation and editing.
- Our Collaborative Diffusion framework could be used to extend arbitrary uni-modal approach (e.g., conditional motion and 3D generation) to the multi-modal paradigm.

Future Works

- Handle conflicts in multi-modal input
- Collaborate other forms of diffusion models
- Video generation

Related Works

- Adding Conditional Control to Text-to-Image Diffusion Models
- T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models.

Recent Explorations

Recent Works: Relation Inversion

Recent Works: Talk-to-Edit

Hi, how does she look like with a bigger smile?

Yes, and the bangs can be much longer. Let's cover the eyebrows.

Is the smile just right now?

editing and checking whether the bangs have covered eyebrows

Maybe you would like to try editing the glasses instead?

Summary

- Human-Machine Collaborative
 - Multi-Modal Control
 - Multi-Round Interactions
- Future
 - Video Generation
 - Complexity & Quality & Controllability

Collaborative Diffusion

for Multi-Modal Face Generation and Editing

Paper: https://arxiv.org/abs/2304.10530

Code: https://github.com/ziqihuangg/Collaborative-Diffusion

Project Page: https://ziqihuangg.github.io/projects/collaborative-diffusion.html

Video: https://www.youtube.com/watch?v=inLK4c8sNhc

Code