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Pre-trained Diffusion Models

* image generation

with towerin
skyscrapers
i g ® G TRV and flying
'A street sign that reads 'A zombie in the '‘An image of an animal "An illustration of a slightly 1 d

“Latent Diffusion™ * style of Picasso" half mouse half octopus’ conscious neural network' golden f:ou-'

LATENT \
DIFFUSION B "§&
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LDM [2] SDXL [3]

[1] Dhariwal et al. Diffusion Models Beat GANs on Image Synthesis
[2] Rombach et al. High-resolution image synthesis with latent diffusion models
[3] Podell et al. SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis




Pre-trained Diffusion Models

 controllable generation / editing / translation

ControlNet [1]

“The boulevards are (l:rowded today.”

v

Prompt-to-Prompt [3]
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T2I-Adapter [2]

y oor o Generated Image (S12%512) Ipwtnige  Targel Mask Taryet Text Edited Image

He is a leen. The
T face (s covered with
shwtpnml od

This man has
bsem rmso\ m

(a) Face Generation (b) Face Editing

Collaborative Diffusion [4]

cat —> dog

horse —> zebra

Tl I

2

pix2pix-zero [5]

Zhang et al. Adding Conditional Control to Text-to-Image Diffusion Models
Mou et al. T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models

Huang et al. Collaborative Diffusion for Multi-Modal Face Generation and Editing

[1]
[2]
[3] Hertz et al. Prompt-to-Prompt Image Editing with Cross-Attention Control
[4]
[5]

Parmar et al. Zero-shot Image-to-Image Translation




Pre-trained Diffusion Models
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* add / remove concepts for a pre-trained diffusion model
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invert

Input samples —— “S.” “An oil painting of S,

Textual Inversion [1]

.
P

A photo of a moongate

A nooagate 1n A squirrel in front

the snowy ice of moongate

! 3 Y m

A digital illustration aring
of a v dog in front I} in froat
of & moongate of a soongate

Multi-concept composition
A Ve dog in a A Vx dog wearing
swimming pool sunglasses

Single-concept generation

Custom Diffusion [3]

A photo of a Ve dog

User input images

Remove
Mg Van Gogh

Remove
Grumpy
Cat

Input images

DreamBooth [2]

éxemplar images, <R>

“hamster <>
paper bag”

ReVersion [4]

“Spiderman <R >
ReVersion basket”

“sea <R> cup”

e v (5

|

ELITE [6]

) Local Mapginn Troisisg

—_——— ——

1] Gal et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion

2] Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

3] Kumari et al. Multi-Concept Customization of Text-to-Image Diffusion

4] Huang et al. ReVersion : Diffusion-Based Relation Inversion from Images

5] Kumari et al. Ablating Concepts in Text-to-Image Diffusion Models

6] Wei et al. ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation




Pre-trained Diffusion Models

* video generation
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VideoLDM [1]

VideoCrafter [2] [...]

Yhe busd Skanghat off smting The Eifiel Tower at s um( nudu;o: ansenon A Lntasy hndscaps trending an artstaticn, #
o palncing. frigh rowlvtios

e i on Mavs. A space ihisthe duschiog Ine s, wih famns
and mmoke Ntlowlng out froem e engive,

A super ool gant robet fe Gyderpunt oty
arstaon

LaV|e [3]

[1] Blattmann et al. Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models
[2] He et el. Latent Video Diffusion Models for High-Fidelity Long Video Generation (And more)
[3] Wang et al. LaVie: High-Quality Video Generation with Cascaded Latent Diffusion Models
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Diffusion U-Net remains under-explored
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MVotivation = Taawmow e

* Downstream applications
 directly utilizing pre-trained diffusion U-Nets
* internal properties of diffusion U-Net features remain under-explored

* Train better foundation models
e expensive (e.g., SDXL)
* besides scaling up (e.g., data scale, model size), what else can we do?

* Why not exploit pre-trained diffusion models?
* Let’s take a closer look at diffusion U-Net and the denoising process
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Diffusion Models Com

reverse process | denoising process

gradually denoise to image

Noise

>

gradually adds Gaussian noise to the data

Jorward process / diffusion process

Image Credit: CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications
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Training & Sampling
+€

Noise
Algorithm 1 Training Algorithm 2 Sampling
5 el (o) 1: xr ~ N(0,I)
- Xg '~ g\Xo 2: fort=1T,...,1do
3’1: t’”[j{/{l(l(f)mir)n({l"“7T}) 3: z~N(0,D)ift>1,elsez=0
. €~ , .
5: Take gradient descent step on 4 Xp-1= \/% (xt - ﬁeé’ (xt, t))| + 0tz

P otz

Vo ||e — €9
6: until converged

Vouxo + /1 — C—Ytﬁl, t)||2 5: end for

6: return xg

Ho et al. Denoising Diffusion Probabilistic Models
Image Credit: CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications
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Closer look at the denoising process
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Denoising Process e | e

Input: A squirrel eating a burger
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Denoising Process

Input: A squirrel eating a burger
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Denoising Process V| s

* The high-frequency components of x; drops drastically during the
denoising process

|_£JO_W_| _______ I;Ii_g}l _________ |
0.51 -
v 0.0
©
_43 t=15
o -0.5
-
© t=10
é"-l.o-
< t=5
1.51
\"/\/\"W\/\t_zfo—
0.0n 0.2n 0.4n 0.6n 0.8n 1.0m
Frequency

Relative log amplitudes of Fourier for diffusion intermediate steps
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How does diffusion U-Net perform denoising?




Denoising Process: U-Net

skip  backbone
features features

skip features (h)

skip connection |
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backbone features (x)
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Denoising Process: U-Net

skip

features features

backbone

skip features (h)

|
o

skip connection |
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backbone features (x)

\ 4
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Role of Backbone and Skip Features

* Backbone: denoising

 Skip: limited impact during inference

b=1.0, s=0.6 b=1.0, s=0.8 b=1.0, s=1.0 b=1.0, s=1.2 b=1.0, s=1.4
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How Diffusion U-Net Perform Denoising? e

e Backbone: primarily contributes to denoising
* Consistent with previous observation (next page)

0.0 0.6
o . 0.8
4 -0.51) High-frequency decreases
I as b increases — 1.0
3-1.0 — 12
£ — 1.4
©
8’-1.5-
—
< -2.0+

0.0mn 02n 0.4n 0.6m 0.8n 1.0m
Frequency

b=1.0, s=0.6 b=1.0, s=0.8 b=1.0, s=1.0 b=1.0, s=1.2 b=1.0, s=1.4 Fourier relative log amplitudes of
variations of b
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Denoising Process V| s

* The high-frequency components of x; drops drastically during the
denoising process

|_£JO_W_| _______ I;Ii_g}l _________ |
0.51 -
v 0.0
©
_43 t=15
o -0.5
-
© t=10
é"-l.o-
< t=5
1.51
\"/\/\"W\/\t_zfo—
0.0n 0.2n 0.4n 0.6n 0.8n 1.0m
Frequency

Relative log amplitudes of Fourier for diffusion intermediate steps
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How Diffusion U-Net Perform Denoising? * i 25

e Backbone: primarily contributes to denoising

 Skip: introduce high-frequency features into the decoder module

—— backbone
— skip
—— fusion

02nm 0.4nm  0.6m  0.8nm 1.0m
Frequency

Fourier relative log amplitudes of
backbone, skip, and their fused feature Map
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How Diffusion U-Net Perform Denmsmg?FaJ

* Gap between training and sampling

0.0° —— backbone
o — skip
'§ - —— fusion
=
&
rU -
(@)
(@)
-
<
0.0n 02m 0.4n 0.6m 0.8n 1.0m
Frequency
b=1.0, s=0.6 b=1.0, s=0.8 b=1.0, s=1.0 b=1.0, s=1.2 b=1.0, s=1.4 Fourier relative /og amplitudes Of

backbone, skip, and their fused feature Map



0.01 —— backbone

— skip

—— fusion NANYANG
TECHNOLOGICAL S-LAB
’9% UNIVERSITY FOR ADVANCED

P SINGAPORE INTELUIGENCE

A Log amplitude

Training & Sampling

0.2n 04n 0.6n  0.8n 1.0m
Frequency

Noise

Algorithm 1 Training Algorithm 2 Sampling
5 el (o) 1: xr ~ N(0,I)
- Xg '~ g\Xo 2: fort=1T,...,1do
3’1: L~ [j{/{l(l(f)()lir)n({l’ .-, T}) 3: z~N(0,D)ift>1,elsez=0
. €~ , .
5: Take gradient descent step on 4 Xp-1= \/% (xt - ﬁeé’ (xt, t))| + 0tz
Vo ||€ — eo(v/arxo + /1 — C—Ytﬁl, t)||2 5: end for
6: return xg

6: until converged

Song et al. Denoising diffusion implicit models. (ICLR 2021)
Image Credit: CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications
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Freel Meth()d (1) enhance backbone features = omitan | TS

|
o

--------------------------------------------------------------- skip connection }

skip features (h)

\ 4

skip  backbone
features features

backbone features (x) b

(a) UNet Architecture (b) FreeU Operations
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FreeU Method

(1) enhance backbone features .

Scale backbone features up EET 1 IEET
by a factor of b (e.g., b=1.4) i

skip connection }

skip features (h)

b

backbone features (x)
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Ablation: Backbone Scaling Factor

* Enhancing backbone features can improve image quality

b=1.0, s=0.6 b=1.0, s=0.8 b=1.0, s=1.0 b=1.0, s=1.2 b=1.0, s=1.4
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Ablation: Backbone Scaling Factor

Flying through fantasy landscapes, 48, high resolution.
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Average Backbone Feature Maps

* Now: same backbone scaling everywhere.
* Is there a better way?

Generated image Avg Feature map Generated image Avg Feature map
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(1) enhance backbone features
(2) content-aware backbone enhancement

)

FFT 1 IFFT

- M ’m(:l_:l) skip connection |
T — — . = b — 1 . 1
c ;wl,z 87 ( l ) Ma:z:(:il) _ M'm(.’il) T

* spatially adaptive
* instance specific

skip features (h)

"

al

backbone features (x) b
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Content-Aware Backbone Scaling

Constant Content-Aware
Without FreeU Backbone Scaling Backbone Scaling
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Ablation: Backbone Scaling Factor

b=1.8

with increased

v VU X = - [ .| backbone scaling,
owy mountain in the style of Disney, artstation im age can be
oversmoothed

Flying through fantasy landscapes, 4R, high resolution.
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(1) enhance backbone features .
(2) content-aware backbone enhancement IS R
T, — M@n(a_@l) 11 skip gonnection !
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C
1
a_L'l:—ECBl,Z' al:(bl_l) — =
¢ i=1 Maw(ml) B Mzn(ml) skip features (h)

(3) channel-selective backbone enhancement

:BI x; © o, if’i<C/2 >
l [ p— .
i @ 4, otherwise

backbone features (x) b

al
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Channel Selection of Backbone Scaling ™ ™

Select Select Uniform
No Scaling Scale All First Half Second Half Selection

A fat rabbit wearing a purple robe walking t/iroug/i éntasy landscape.
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FreeU Method

(1) enhance backbone features .
(2) content-aware backbone enhancement I -

Lj — Mm(a_cl) .

S-LAB
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+1

o . .

1 skip connection }
a_le—E.’Bl,z' al:<bl_1)7‘[ — e

¢ i=1 am(ml) B m(:z:l) skip features (h)

(3) channel-selective backbone enhancement

o x; Ooap, ifi<C/2 >
bt x i, otherwise

backbone features (x) b

al

(4) suppress low-frequency in skip features

ﬂ (T) ) s ifr < T'thresh f;(hlai) = FFT(hla'i)
b 1 otherwise. F(hui) = Flhisi) © By
h; ; = IFFT(F'(hi;))
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Ablation: Skip Scaling Factor

s=1.0 s=0.8

Flying through fantasy landscapes, 4K, high resolution.
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Feature Maps Visualization
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FreeU ’S Im Pa ct to Fre gquency Domain DG
0.5 0.5 0.5 0.5
SD SD SD SD

0.01 FreeU q, 0.0 FreeU q, 0.0 FreeU q, 0.0 FreeU

© © ©
-0.51 2 -0.51 2 -0.51 2 -0.51

o a a
-1.01 € -1.01 € -1.01 € -1.01

© © ©

o o o
-1.51 3 -1.51 3 -1.51 3 -1.51

< S b
-2.01 -2.01 -2.01 -2.01

28.On 0.2n 04nm O0.6m 0.8m 1.0m 28.01‘[ 0.2n 0.4m 0.6m 0.8m 1.0m 8.0n 0.2n 0.4n 0O0.6m 0.8m 1.0m 8.0n 0.2n 0.4n 0O0.6m 0.8m 1.0m

reverse process | denoising process
Gradually denoise to image
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. S _ | SD+ Fre ) SD ) _ Se+ FreeU SD SD + FreeU

o :
ria"ing a motorcycle.
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Visual Results: Text-to-Video

ModelScope ModelScope + FreeU

- - : ‘}‘; i) . & :‘.?g
Pacific coast, carmel by the sea ocean and waves. MilR dripping into a cup of coffee

synthwave sports car
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Visual Results: Text-to-Video

ModelScope ModelScope + FreeU ModelScope ‘ModelScope + FreeU ModelScope ModelScope + FreeU
\\\\w/f B a
\\ \ Wl e v
W

Fireworks

Picturesque autumn scene of Altausseer See laKg. Sunset time lapse at the beach with moving clouds and colors in the s a shark is swimming in the ocean.

i =
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Visual Results: Personalized Text-to-Image

Input images DreamBooth DreamBooth + FreeU

A toyon a beach

Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
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Visual Results: Personalized Text-to-Image ™ ™

ReVersion ReVersion+FreeU ReVersion ReVersion+FreeU
_ O g o e I\ (R e e~

child <R > child dog <R > basket
<R > = “sits back-to-back with” <R > = ‘s contained inside of”
:

’(:.1 2 e g ~ ‘,j T Dt 0D A
Spiderman <R > basket cat <R >motorbike

e . . ” . »
<R >= “is contained inside of’ <®R>= “ride on

Huang et al. ReVersion : Diffusion-Based Relation Inversion from Images
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Rerender Rerender + FreeU

A dog wearing sunglasses
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Visual Results: Video-to-Video

A dog wearing sunglasses






































































FreeU Demo

SD vs. FreeU
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Generate image

FreeU Parameters (feel free to adjust these parameters based on your prompt): v

SD options
SDXL -
bl: backbone factor of the first stage block of decoder 13 & b2: backbone factor of the second stage block of decoder 14 &
s1: skip factor of the first stage block of decoder 09 2 s2: skip factor of the second stage block of decoder 02 2
seed 42 g
Image Image
2] (4
SD FreelU
<

Past generations

S-LAB
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Community Contributions

7% Sebastian

Spent a few hours experimenting with FreeU and I'm very pleased with
the results! It's remarkable how it boosts the detail levels of SDXL
without any impact on process time. I'm definitely keeping this in my
workflow! &

Sequence Vie

TuvYYIILBTYY IS

5}-\0# NANYANG
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exp 01) LCM, 4-steps, freeU (Y/N)
With proper hyperparameters, freeU gives better quality even with LCM.
seed=1024

"photo of a beautiful girl in the space, universe, earth in the background®
pipe.unet.enable_freeu(s1=0.2, s2=0.2, b1=0.8, b2=1.4)

L

GM I've just uploaded the SD freeU ComfyUl workflow - give it a try and
share your thoughts with me! Cheers!

cc
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* Different FreeU strategy across inference time
* Backbone features: early stage
» Skip features: later stage

* Further explanation on FreeU
* Gap between training and inference
* Insights for training strategies

* Automatic parameter search for FreeU
* FreeU for more modalities (e.g., audio, video, 3D)




Thank you for listening!



