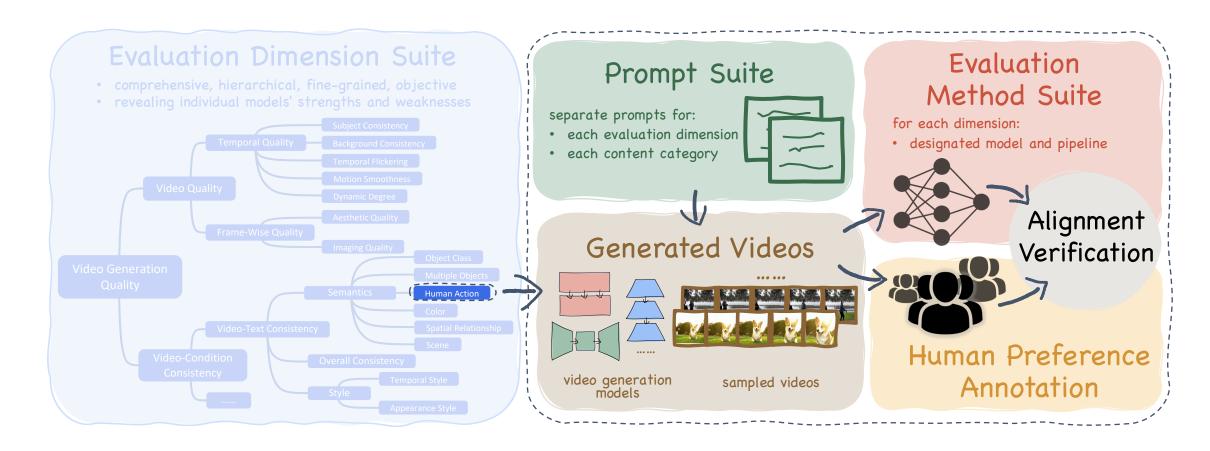


Comprehensive Benchmark Suite for Video Generative Models

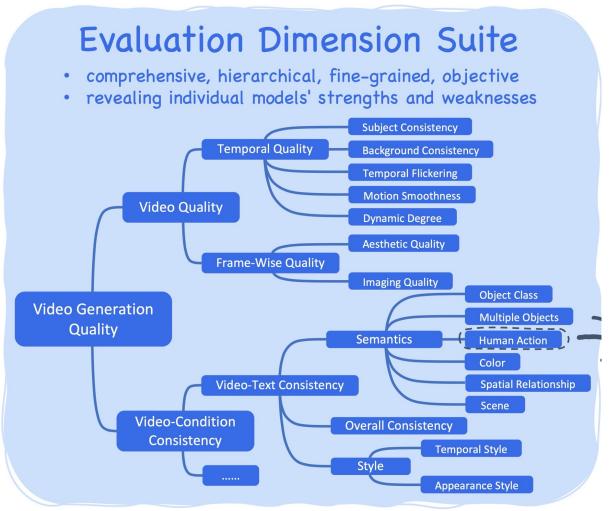
Ziqi Huang

MMLab@NTU | S-Lab, Nanyang Technological University

Video generation is developing rapidly

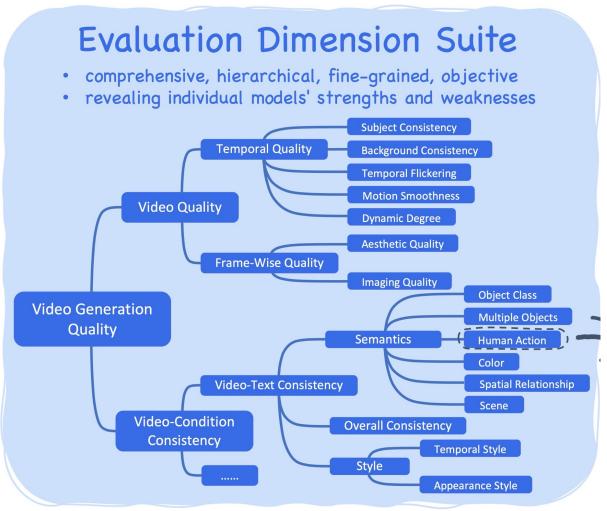

Why Need VBench?

- Video generation is developing rapidly.
- How to evaluate these models? What's each v-gen model good/bad at?

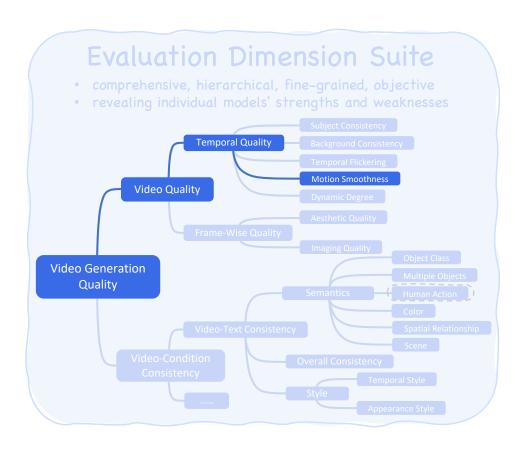

Existing Metrics	What We Need
a single number (FVD, CLIP) can't reveal individual model's strengths and weaknesses	multiple dimensions for detailed insights
not well-aligned with human (FVD)	high alignment with human
not catered for AIGC (e.g., Quality Assessment)	focus on AIGC artifacts

 We propose VBench to comprehensively benchmark and evaluate video generative models.

Overview of VBench



Dimension Suite


- 16 ability dimensions, hierarchical and disentangled
- each dimension assesses one aspect of video generation quality

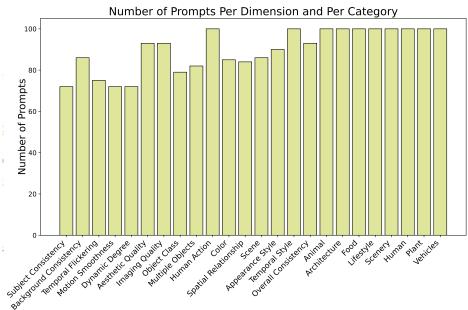
Why Multiple Dimensions?

- reveal individual model's strengths and weaknesses
- different people prioritize each ability dimension differently

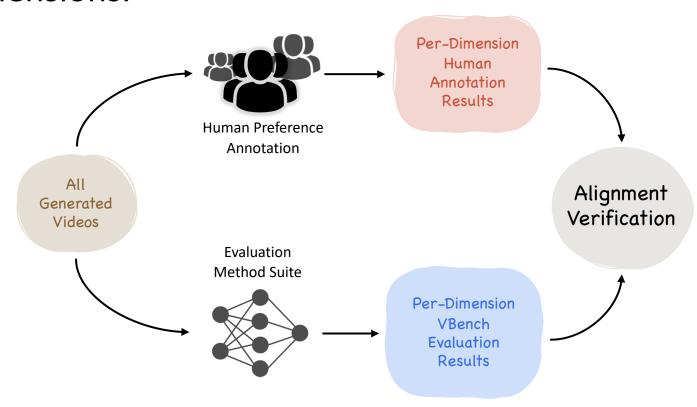
Evaluation Dimension: Motion Smoothness

score 96.04% (better) score

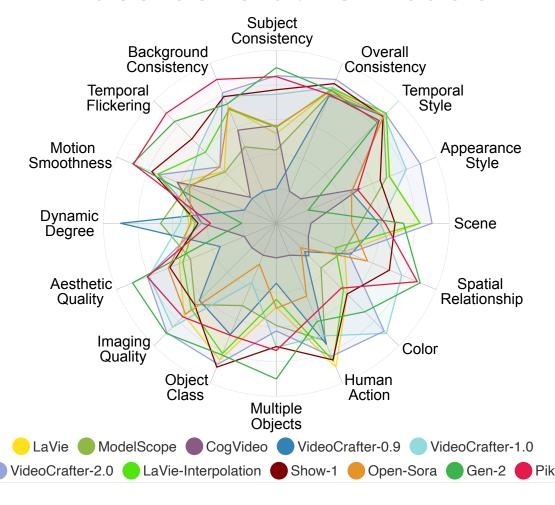
score 88.47%



whether the motion in the generated video is smooth


Prompt Suite

- diverse → comprehensive evaluation
- compact → efficient evaluation
- prompt suites for each dimension and each content category ->
 multi-perspective insights
- per ability dimension: ~100 prompts
- per content category: ~100 prompts


Human Alignment

 VBench evaluation is well-aligned with human perception in each of the 16 dimensions.

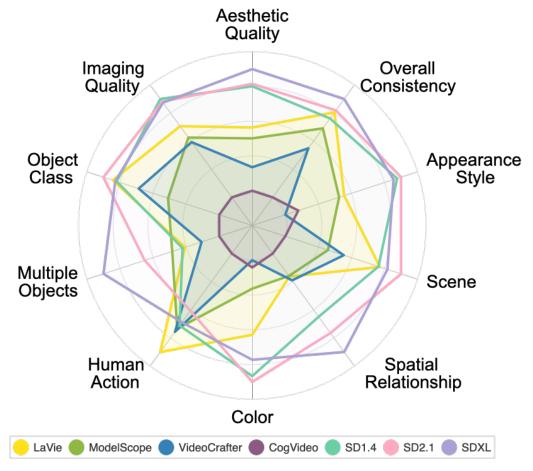
Evaluation Results

Video Generative Models

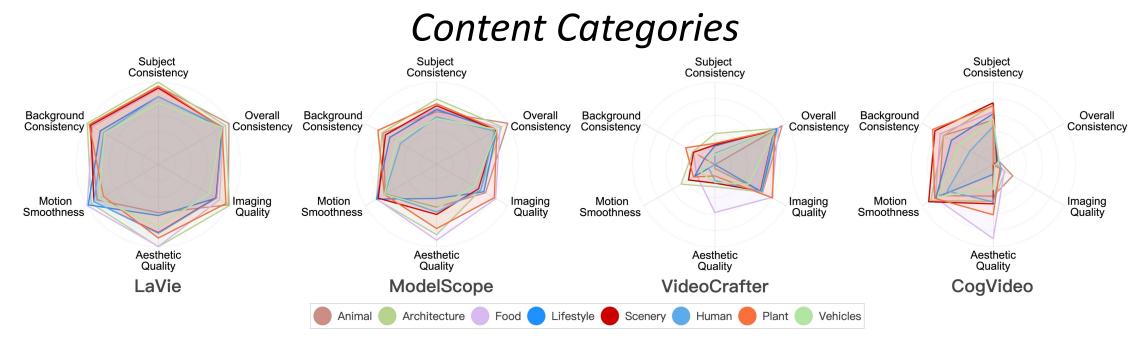
- trade-off across dimensions:
 - e.g., temporal consistency vs. dynamic degree

VBench Leaderboard

- 14 T2V models, 12 I2V models
- Join our leaderboard!


Leaderboard

		subject consistency	☑ background co	ensistency	oral flickering	motion	smoothness 🗸 dynamic de	gree aesthetic quality	
Select Semantic Dimensions		imaging quality	object class	multiple objects	✓ human action	o co	lor spatial relationship	scene appearance	style
Deselect All		temporal style	overall consistency						
Model Name (clickable) 🔺	Source A	Total Score ▼	Quality Score	Semantic Score	▲ Selected Sc	ore 🛦	subject consistency A	background consistency	
T2V-Turbo (VC2)	T2V-Turbo Team	81.01%	82.57%	74.76%	81.01%		96.28%	97.02%	
Gen-2 (2023-06)	VBench Team	80.58%	82.47%	73.03%	80.58%		97.61%	97.61%	
VideoCrafter-2.0	VBench Team	80.44%	82.2%	73.42%	80.44%		96.85%	98.22%	
Pika (2023-06)	VBench Team	80.4%	82.68%	71.26%	80.4%		96.76%	98.95%	
AnimateDiff-V2	VBench Team	80.27%	82.9%	69.75%	80.27%		95.3%	97.68%	
VideoCrafter-1.0	VBench Team	79.72%	81.59%	72.22%	79.72%		95.1%	98.04%	
Show-1	VBench Team	78.93%	80.42%	72.98%	78.93%		95.53%	98.02%	
Latte-1	VBench Team	77.29%	79.72%	67.58%	77.29%		88.88%	95.4%	
LaVie-Interpolation	VBench Team	77.11%	79.06%	69.28%	77.11%		92.0%	97.33%	
LaVie	VBench Team	77.08%	78.78%	70.31%	77.08%		91.41%	97.47%	
Open-Sora	VBench Team	75.91%	78.82%	64.28%	75.91%		92.09%	97.39%	
ModelScope	VBench Team	75.75%	78.05%	66.54%	75.75%		89.87%	95.29%	
/ideoCrafter-0.9	VBench Team	73.02%	74.91%	65.46%	73.02%		86.24%	92.88%	
CogVideo	VBench Team	67.01%	72.06%	46.83%	67.01%		92.19%	96.2%	


Evaluation Results

Video vs. Image Generative Models

- gap with T2I in compositionality
 - e.g., multiple objects,
 - e.g., spatial relations

Evaluation Results

- uncovering hidden potential of models in specific content categories
 - e.g., CogVideo has strong aesthetics in Food category.
 - CogVideo's potential in aesthetics by improving such ability in other content types.
 - we recommend evaluating video generation models not just based on ability dimensions but also considering specific content categories to uncover their hidden potential.

Fully Open-Source

- Evaluation Method Suite (code)
- Prompt Suite (text prompts)
- Human Preference Annotations
- Generated Videos (mp4)
 LaVie, ModelScope, CogVideo, Show-1,
 VideoCrafter-0.9/1/2, Pika, Gen-2,
 OpenSora (more to be added)

pip install vbench

Serial Works in Progress

VBENCH-I2V

Image-to-Video (I2V): multi-ratio and multi-scale image benchmark, I2V evaluation dimensions

VBENCH-Long

for longer videos (e.g., 10 sec, 20 sec, 1 min)

VBENCH-Trustworthiness

non-technical aspects of video generation model: culture, bias, safety

Credits: mainly developed and maintained by the team of VBench Contributors (order based on the time joining the project): Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Nattapol Chanpaisit, Xiaojie Xu, Qianli Ma, Ziyue Dong

Evaluating Visual Generation

- Towards A Better Metric for Text-to-Video Generation
- FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Textto-Video Generation
- EvalCrafter: Benchmarking and Evaluating Large Video Generation

Paper List

Comprehensive Benchmark Suite for Video Generative Models

Ziqi Huang¹*, Yinan He²*, Jiashuo Yu²*, Fan Zhang²*, Chenyang Si¹, Yuming Jiang¹, Yuanhan Zhang¹, Tianxing Wu¹, Qingyang Jin¹, Nattapol Chanpaisit¹, Yaohui Wang², Xinyuan Chen², Limin Wang^{4,2}, Dahua Lin^{2,3†}, Yu Qiao^{2†}, Ziwei Liu^{1†}

(* equal contributions, † corresponding authors)

¹ S-Lab, Nanyang Technological University ² Shanghai Artificial Intelligence Laboratory

³ The Chinese University of Hong Kong ⁴ Nanjing University

Q&A

Poster Session

- Friday 10:30am-12:00
- Arch 4A-E Poster #219
- Welcome any questions & discussions

Comprehensive Benchmark Suite for Video Generative Models

https://github.com/ Vchitect/VBench

Code